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Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown poten-
tial from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an
unknown chemical reaction from quantitative information abitaifinal state and its dependence on initial
conditions—except it is known to be impossible for equilibrium reactions. This article presents a case study of
a far-from-equilibrium reaction: it presents a systematic phenomenological analysis of experimental time series
for the amount of final product, a biopolymer, formed from various initial concentrations of monomers.
Distinct mathematical properties of the kinetics of the unknown reaction pathway are found. These properties
are shown to restrict the kinetics to a single model that generalizes Oosawa’s classical nucleation-
polymerization model. The methods used here to analyze the self-assembly of microtubules from tubulin are
general, and many other reactions and processes may be studied as inverse problems with these methods when
enough experimental data are availapi&1063-651X97)08011-3

PACS numbe(s): 87.10+e, 82.35+t, 87.22.Bt, 02.30Hq

I. INTRODUCTION B. Biological self-assembly

o ) ) The process studied here is an example of biological self-
Scientific theorlf—:-s are u;ue}lly not unambiguous Conseassembly, the spontaneous assembliafotubulesMicro-
quences of experimental findings. The present paper dggpjes are extremely rigid protein polymers which provide
scribes a theory which nearly is. It is a kinetic theory, de-(jgigity where it is needed in eukaryotic cells. Self-assembly
rived from experimental data for a nonequilibrium reaction.p4q peen described for subcellular structures ranging from
The amount of final reaction product, a polymer, IS MONI~the simple actin polymer filaments of, e.g., muscle fibers to
tored in time for several traverses of the reaction pathwayy,q highly complexT-even bacteriophagds]. Models ca-
traverses differing only with respect to the initial concentra-pab|e of quantitative reproduction of experimental data exist
tions of monomers. A mathematical analysis of the resultinq:Or the polymerization of actifi5—11] and deoxy sickle he-
experimental time series leads directly to a kinetic model formoglobin[lZ—lq.
the reaction pathway. The shortage of reliable quantitative models is not due to
lack of experimental data. Nor is it due to lack of interest in
understanding these processes. The clinical implications for
the treatment of sickle-cell anemia following from the ki-
What is solved here is a so-calletverse problemi.e., an  netic model developed if12—14 underscore this point dra-
unknown cause is determined from its known effects. Inmatically. What seems to be missing is a systematic ap-
physics, a classical example of an inverse problem is proproach to the inverse problem: The self-assembly of actin
vided byinverse scattering theoryParticles are scattered off polymers is sufficiently simple that the correct model could
each other with various energies, and from the scattering datde guessed, essentially, it being the simplest possible
one tries to deduce the interaction potential between the panucleation-elongation model one can write down. Similarly,
ticles. This problem is well studied, and the mathematicathe double nucleation model for deoxy sickle hemoglobin
requirements for existence and uniqueness of a solution argas essentially guessed from clever experiments, and was
understood1,2]. not pushed to describe more than the initial stage of assem-
In chemistry or biochemistry one can formulate an analo-bly.
gous inverse problem: what is the information necessary and Both actin and hemoglobin form fairly simple linear poly-
sufficient to determine a reaction mechanism from the reacmers, making this approach to modeling possible. More
tion's products? It is well known that one cannot find acomplex systems require a more systematic approach. Mi-
unique mechanism from a kinetic analysis o$teady-state crotubules are polymers with a helical lattice structure, like
situation[3]. Nonequilibrium situations reveal more informa- flagella and tobacco mosaic virus, and their complexity ranks
tion, we shall see. a step above that of actin and deoxy sickle hemoglobin, but
below, e.g., the icosahedral capsids of spherical vir[&gs
In the present article we analyze the rich data available for
*Present and permanent address: /Rid@tional Labora- the nucleation and polymerization of microtubulesvitro
tory, DK-4000 Roskilde, Denmark. Electronic address: from solutions of purified tubulin. Under appropriate condi-
Henrik.Flyvbjerg@Risoe.dk tions, tubulin spontaneously assembles to form the cylindri-

A. Inverse problem
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0.8 , . ; . ” . - The model we find here generalizes the classical model by
v Oosawa and co-worke[§—7]. It is analytically soluble up to

A AMAAA one integral despite its highly nonlinear nature. More impor-
49944449 1 tant, though a specific reaction is analyzed here, the methods
<l<ff<<«<«‘ « ] used are general, and may be applied to a wide range of

il AAAAAAAAAAAAAAAA reactions, provided sufficient experimental data are avail-
g ab 4 T able.
— A
< A 1
A D. The logical steps

The logical steps leading to the assembly kinetics may be
summarized as follows. First, we observed that the time se-
' : ! : ries seem tacale We therefore analyzed them for this prop-

10 15 20 erty, and found that they display so-callgldenomenological
STt scalingto a good approximation.

If this scaling property were exact, the individual time
T series would be fully characterized by one characteristic tur-
bidity scale and one characteristic time scale, while its over-
all behavior is common to all the time series, and described
by a single function. This simple phenomenology is typically
displayed by processes which are dominated by or consist of
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< 02 _igﬁ: S ¥ a single mechanism. It vastly simplifies the task of modeling,
Ag“jnj: §.’ PR because all series are described by the same unknown func-
0.1 “ﬁ&g q,’ p Y 5 ®® @ tion, rather than each series by its own. For this reason, we
- 0o ®® ® 1 demanded that our unknown theory should scale, knowing
s 24 £ o ea A O RO that it would only be an approximate theory then, but a good
0 30 60 90 120 150 180 approximation.
t [min) Second, we considered the dependence of the characteris-

tic time on the characteristic turbidity. Both were read off the
FIG. 1. Turbidity versus time of tubulin solutions in which a experimental time series, so their relationship could be found

temperature jump from 6C to 37°C at time 0 has induced mi-  wjthout knowing the assembly kinetics. We found a remark-
crotubules to self-assemble. Open symbols: Time series obtaineébw simple and robust relationship, namely, that the charac-
from eight different initial concentrations of tubulifl7], Fig. 5, teristic time is inversely proportional to the third power of
referred to aglata set Ain the present paper. Filled symbols: Time the final turbidity.
series obtained from eight independent assembly runs with eight Third, we interpreted these results as indicating simplicity
similar initial concentrations of tubulif17], Fig. 9; referred to as f the aésembl rocess. hence assumed a sinale pathway of
data set Bin the present paper. 0 yPp ’ . gie pathway

assembly would be adequate to describe the experimental
cal five-step helical “crystal lattice” constituting a microtu- data. We wrote down a generic model for this and demanded
bule, see[16] Fig. 1. During the assembly reactions that its solutions scale as just described. We found that these
discussed belowg and 8 tubulin monomers are perma- requirementsiniquely determinéhe model up to the number
nently bound together in pairs, tubulin hetero-dimers, whichof assembly steps in it, and the values of the rate constants
therefore areffective monomersf the reactions studied. So for these steps.
whenever we use the word “monomer” in the following, we  Fourth, we realized that the number of assembly steps is

are referring to these effective monomers. revealed in the initial growth of the time series, and analyzed
this growth. We found that the series grow with time to the
C. Turbidity time series sixth power. This result means that a stable nucleus for po-

The data analyzed here are shown in Fig. 1: The plottindYMerization is created iriive steps and is made from 18
symbols are experimental time series for thebidity A of ubulin hetero dimers. Thus the kinetic model was uniquely
16 different solutions of tubulin in which microtubules grow determined up to five rate constants.
in the presence of glycerpl7]. The turbidity is a simple and  Fifth, we solved the kinetic model exactly up to a single
precise physical measure of the amount of tubulin that ha#itegral. The model is described by six coupled nonlinear
polymerized at any given time during assembly; see belowfirst-order differential equations in time, but because of their
These time series define our inverse problem: we assume thetaling properties, these equations can, nevertheless, be
they all resulted from the same assembly pathway, initiatedolved.
with different initial concentrations, and then try to find that  Sixth, we fitted the solution of the kinetic model to the
pathway from the time series. As it 7], we will distinguish  experimental time series, using the five rate constants as fit-
between the eight time series measured in one set of asseting parameters. Four of these rate constants set the rates for
bly runs and shown with filled symbols, and the other eightsimilar processes, and turned out to have identical values
series measured in another, independent set of assembly ruwbken fitted to the data. So we might as wafisumethose
and shown with open symbols. We refer to them as data sefsur rate constants to be equal, and work with a two-
A andB, respectively. parameter theory. That theory is our final model, and is the
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one shown fitted to the experimental data in Figs. 9—11. 10°
A brief version of the analysis presented here was given

in [18]. The present paper is the second of three that all apply

the modeling tools of theoretical physics to different aspects

of the complex dynamics of microtubules. The first paper 10

[16] modeled the cause of so-calletynamic instability

[19,20, a phenomenon observed in microtubules that haver_

not been stabilized like those discussed here. Specifically g,

the stochastic dynamics of the so-callegp was modeled, < 107

and found to provide a common explanation of different ex-

periments. The third paper will more thoroughly discuss a

realistic model of so-callednicrotubule oscillationswhich

was briefly presented ifi21] and builds on the modeling 10

presented here and in the first paper of the triology.

1

1 10 100
Il. PHENOMENOLOGICAL DATA ANALYSIS t [min]
A. The scaling ansatz FIG. 2. Same data as in Fig. 1, plotted &&) against timet

. . . . . using double-log axis.
The experimental time series shown in Fig. 1 all have

similar sigmoid shapes. We therefore ask whether they diffeby finding the value foA., which gives the best straight-line
only through different overall time and turbidity scales. If fit to log; A..— A(t)] plotted against at late times. While
this is the case, they are said 4oale meaning all 16 time this procedure may be ambiguous in general, it is not in the

series can be described bysimgle function f as present case, because the exponential approach is very dis-
tinct in the data. Figure 3 shows that approximately the last
A AL) =ALf(t/to(A)), (1) third of the data points in each time series displays this ex-

. ) ponential approach to its asymptotic value.
a property which obviously would reduce the task of model-

ing significantly. Heref is a dimensionless function of a
dimensionless argument, and interpolates between 0 and 1.
In Eq. (1) we distinguish the 16 time series and correspond- From a theoretical point of view, an obvious interpreta-
ing characteristic timef, by the asymptotic valud.. of the tion of this exponential approach offers itself. The amount of
individual time series. These asymptotic values are easilpolymer present, hence the turbidAy grows at a rate which
determined with precision from the series, as we shall see.Is proportional to the number of microtubulegt), and to
The relationshig1) is more easily determined by plotting the remaining amount of tubulire(t),
A againstt with double-log axis, since Edql) implies that A)

d
at <p(t)c(t). 3

C. Why A, is approached exponentially fast

logiA=10g;0A.. + g(log; ¢t —109;4to), (2

whereg(x) =log;d f(exp)]. Equation(2) shows that if scal- 10 e
ing is satisfied, different time series fall on curves which are
identical, apart from being translated vertically and horizon-
tally relative to each other by amounts given by,l¢g. and
loggto, respectively.

The experimental time series in Fig. 1 are replotted with
double-log axis in Fig. 2. We see, indeed, that the seriesé 107 + ]
seem to be translates of each other with few exceptions i ]
which we shall return to. In order to test the validity of this ~
similarity, we need to findy andA., for each individual time
series, translate the plots of the series by these amounts, ar

inspect the degree of collapse of the resulting plots.
A

10'2 N L L L L i h L N L t
B. Determining A, 1 3 5 7

t/t theor A
The asymptotic turbidityA,, can be obtained with better ot

preqsmn than any other ”meer WE_} shall ‘2"30“,55’ bgcause FIG. 3. Demonstration that a turbidity time series approaches its
A, is ap_proached exponentially fast in time, i.e., in a Slmpleasymptotic valueA., , exponentially fast in timeA. — A(t) plotted
and distinct manner that allows us to extrapolate from theygainstt. A(t) is an experimental time series, white. is a value
data at late, but finite, times to a value far, which truly  chosen for each series so as to make- A(t) fall on a straight line

corresponds to time infinity. At this point in our line of de- at Jate times in this plott is given here in units of a characteristic
duction, it is a purely phenomenological observation that thigime, t"*", which is introduced below, and here only serves to

approach is exponential. The observation is made for a givemake it possible to show several time series in one plot. The offset
time series, and its value féx,, is determined with precision, A serves the same purpose.
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FIG. 4. Same data as in Fig. 1, plottedA&@)/A., against time 0.8

t using double-log axis.

The microtubules in these experiments are stabilized witt
glycerol and cannot depolymerize again, once they hav
formed, so we may assume that all the tubulin initially
present in solution eventually ends up being polymerized
Then

c(t)xAL—A(t), 4
hence
dc(t) . . :
at «—yp(t)c(t). (5) FIG. 5. Experimental data from Fig. 1, replotted here with the

same plotting symbols, but &4 A, against/ty, demonstrating data

. . . . collapse. Open symbols: data skt Filled symbols: data seB.
If, as expected, nucleation of microtubules is a cooperatlv?nsets, same plotted with double-log axis

process involving several tubulin molecules, then nucleation
of new microtubules will terminate faster than the polymer-

ization of already existing microtubules, because the latter itation along the logaxis, except for the two slowest assem-
proportional toc(t) while nucleation depends on a higher bling series, marked with crosses inside circles.

power ofc(t). Consequentlyp(t) will reach its asymptotic To test for this last property, we read the so-calledth
value v,., faster thanc(t) reachests asymptotic value, 0, time, t,, off Fig. 4 for each time series. Thenth timeis the
and at late times we have time when a series has reached one-tenth of its final value.
de(t) The choice of one-tenth is conventiohal], and convenient
o —p.c(t), (6)  for our purpose, since we can easily obtain the tenth time
dt with precision from Fig. 4. We then replotted the series as

A/A, againstt/ty in Fig. 5. Other definitions, e.g., half time,

which shows that(t), henceA..—A(t), vanishes exponen- .
© (1) P can be used and lead to similar results.

tially fast in time, as we found for the experimental time
series.

If we accept this interpretation of the late third of each E. Data collapse
time series, we must obviously extract information about the  Figure 5 shows that the relationship in E@) does, in-

nucleation process from the initial two-thirds of the series.qeed hold to a high degree for almost all of the time series.
Not even the final number of microtubules, , can be de-  opjy the two time series plotted as crosses within circles
termined from the late part of the experimental time Series,near anomalous. They describe the shmvestassembly

Tfh's IIS because thte _turbltdr:ty measuzjels Onlt{w thfe t(_)tal frgolu'gxperiments, starting with tHewestconcentrations of tubu-
of polymer present, 1.€., the summed fength ot microtubu e?ln, and lasting for over two hour#\ging of tubulin is well

present, and cannot distinguish many short microtubuleﬁnoWn to occur over such long times at 92, and may be

from fewer, longer microtubules. responsible for their anomalous forms. We exclude these se-
ries from the analysis on this ground. They define one side of
the experimental window for microtubule assembly.

Having determined\,, for each time series, we replot the  Any sensibly chosen curve representing the remaining
series ag\(t)/A,, vst with double-log axis. This was done in time series would differ at most 10% from the worst case at
Fig. 4, and the series do seem to be identical up to a tranghe worst time. So even before we know the theory that we

D. Determining tg
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100 toxALS. 7)

This relationship is surprisingly simple. Like the scaling
property, this simplicity indicates that a single pathway is
responsible for the assembly reaction studied here, even
though the total amount of tubulin polymerized in these re-
actions varies by a factor larger than 3, and their time scales
by a factor larger than 30. Both the scaling propétyand

the power-law dependenc¢@) are of a precise mathematical
form. Thus, without use of any theory, whatsoever, our phe-
nomenological analysis of the data has revealed mathemati-
cal properties which, if demanded from a model, will narrow

. the search for this model significantly.

p 1.0 Fitting the integer power law?) to the combined data in

A lem] Fig. 6 gives the prefactor and what we shall refer to as our
theoreticalvalue fortg for a given value ofA., in order to
distinguish it from the relationship read of the individual
time series,

10

t, [min]

1 L
0.1

FIG. 6. Double-log plot ofty(A.) vs A, . Circular symbols
show results for data sét. The full straight line is a fit to the six
filled round symbols which most distinctly fall on a straight line. Its
slope is—2.97+0.05. The two time series corresponding to the two
openround symbols appear anomalous, maybe because they de- tBheor(Aw)=(0.4lt 0.01) min/cnPx AL 3. (8)
scribe the slowest assembly processes in daté sahd tubulin at
37 °C denaturates after a while. But their inclusion in the fit obvi-
ously would not change its outcome. Square symbols show results Ill. MODELS

for data setB. The dashed straight line is a fit to the seven filled . . .
square symbols which most distinctly fall on a straight line. Its ~ VOter and Erickson considered three theoretical models

slope is—2.90+0.09. The intercepts of the two straight lines with for their experimental time seriegl7]: (i) The classical

the second axis do not differ significantly, and give the constant offodel by Oosawa and co-workef5—7], which is the sim-

proportionality in Eq.(7) as 0.44:0.03 min/cn?. plest possible theory describing nucleation followed by po-
lymerization. It describes formation of a nucleus in a single

are looking for, we know which precision we may achieve SteP- I_Experimental rgsults for thg spont_aneous ;elf-assembly

with it of actin filamentswhich are relatively simple helical poly-

In the remaining time series, it is the time series correMers, are fitted well .by this moddlL1]; (i) a double-.

nucleation model devised for the spontaneous polymeriza-

sponding to thenighestinitial concentrations anéhstestas- _ . :
sembly dynamics that differ from the others at late times infion of deoxy sickle hemoglobjri4]. This model has already

Fig. 5. This is so for both data seésandB, and shows that formed polymer catalyze the nucleation of more polymers;

the discrepancy is systematic. It is known from electron mi—and.("'). a 'T”Od.e' for two-d|menS|onaI nucleat|on_ and poly-
erization inspired by the geometrical form of microtubules.

croscopy that at these highest concentrations, in addition to . : . X
Py 9 either of these models described the time series M.

microtubules, other assembly products also f¢ard]. This In vi £ thi ) lated iccl oh
is a good reason not to worry about the way these time series n view of this, we lTormulated genericclass olphenom-

differ from the rest when they do—they are close to the othegNologicalmodels which describe the formation of a nucleus
side of the experimental window for microtubule assembly.throughany sequence of intermediate stages, assuming only

Instead, we focus on the fact that the other series coincid smglgse_quence, or pa_th of assembly, is involved, see Fig.
well. . In principle, several different paths of assembly may con-

Experimental data are always noisy on some scale henddbute simultaneously to the formation of microtubules. If
can never display a perfect collapse. The imperfection of thdh's 'Sﬂ:he caseth It f's ha;ﬂly tpog_sé?[le t'FO separate almd det;[er-
data collapse in Fig. 5 is not due to the experimental errofiN€ these pains from Ine turbidity ume Series alone, be-
bars that we estimate below, however. So it is a matter O?e_luse.dlfferent pgths typlcglly will 9qqtrlbute to the turbidity
taste and preference whether one accepts the collapse \g(gh different weights at different initial tubulin concentra-

such. We do, because it is a great mathematical conveniencté?ns' That is why we tentatively assumed that there is only

potentially leading to a theory that is at least 90% correct2N® path of Se'f'?ssemb'@?f- [22]). We also assumed that
ery stage in this path is connected to the next stage by

Once that scaling theory has been established, one may try %(;d't' ¢ v Thi d tion i
describe the last 10% difference between theory and experi'Jl iion of monomers only. This second assumption IS very
reasonable because the monomer concentration greatly ex-

mental data ascaling violations using a perturbative ap- d i rati hil leation tak |
proach with the 90%-correct theory as the starting point an eeds any other concentration while nucieation takes place.
. L ith these two assumptions, we could write down a generic
leading approximation. S . o
set of kinetic equations describing the assembly process. Ac-
cording toOccam’s Razarthis model is then correct if it
works. If it does not, that is also a definite result about the
The values fort, that we read off Fig. 4 are plotted complexity of the data. We found the assumption confirmed
against the corresponding values for in Fig. 6. This figure by the results it leads us to, or, more correctly, we found it
shows quite convincingly that justified as a very good and practical first approximation. We

F. The relationship betweenA., and t,
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N, monomers dcy/dt=foco—ficMe; +b,yc,—dscy, 9
©eo68 dCi /dt:fi,lcni_lcifl_fiCniCi_biCi+bi+1Ci+1_diCi
N/ -
i =3 for 2<i=Kk, (10
L d 5
! 3 dv/dt= kanka, (11)
t o
! % dM/dt=f,, Cv. (12
oS! e
*QT 3 é The addition ofn;>1 monomers in one step at a rate pro-
2. 2 >~ 3 portional toc"i is the effective kinetic description that results
2. § =] when one is unable to time resolmgrapid successive addi-
=2 tions of a single monomer, in equilibrium with the quick
: decay of the highly unstable intermediate aggregates formed.
Sincen;=1 is allowed in Egs(9)—(11), any degree of ex-
' perimental time resolution can be captured with these equa-
d tions, including perfect resolution.
fr.1C is the rate at which microtubules grow at tubulin
concentratiorc. We have set the backwards ratgsand the
destruction ratesl; to zero fori=k+ 1, assuming microtu-
3 bules can only grow. This is what we expect for microtu-
82 bules stabilized with glycerol, as ifl7]. It is what was
B8 fint , found experimentally for microtubules stabilized with a non-
2 E ® Snde hydrolyzable GTP(guanosine triphosphateanalog ([23],
> § < v Fig. 3. It has also been demonstrated experimentally for
33 growin % nonstabilized microtubules in the growing stg?d].
§ g microtubule > @
o E = IV. RELATING EXPERIMENTAL
s < single > AND THEORETICAL VARIABLES
@ /@ monomer L
When self-assembly is initiated &0, only monomers
are present. Since nuclei form with difficulty, while micro-

tubules grow rapidly, the amount of tubulin contained in nu-
clei and intermediate aggregates is negligible at any time
during assembly, compared to that in monomer or polymer
form. If we neglect the negligible, mass conservation gives

FIG. 7. Kinetics of assembly of nucleus from monomers with
concentratiort through several relatively stable intermediate aggre-
gates. For i<k, f; is the rate constant for the assembly of the
(i+21)th relatively stable aggregate, having concentratipn,,
from theith such aggregate, having concentratipnby addition of c+M=c(0), (13)
n; monomersb; is the rate constant for the reverse process,dnd

the rate constant for disintegration of théh aggregate. The wherec(0) is the monomer concentration at tirte 0. For

(k+1)th aggregate is the nucleus, defined as the smallest aggregaiemparison and later consistency check, the exact relation-
to which further addition of monomers takes place one at a timeghjp is

and at the rate with which microtubules grow. The number concen-
tration of these nucleand longer microtubules ig,, and the con-
centration of polymer mass accumulated in therMis C+NgCy+(Ng+Nny)Cat(NotNyitny)Cat -+

k—1
2 ni)ck
i=0

will briefly return to the possibility of multiple pathways in
Sec. XII C.

Let ¢ denote the monomer concentratian,the number
concentration of theth relatively stable intermediate assem-
bly product,n; the number of monomers added to this prod-We checked the consistency of the approximati8) by
uct to form the {+1)th intermediate assembly produkt, using it when solving the theory derived below, and inserting
the number of different, successive intermediate products—the solution into the additional terms occurring in Ef4).

i.e., k is the number of intermediate assembly stages of thés they turned out to be negligible at all times, the approxi-
nucleus— and’ the number concentration of nuclei, includ- mation(13) is self-consistently correct.

ing such on which microtubules have grown. IMtdenote This is a crucial result because we cannot use the exact
the amount of mass polymerized to microtubules, discountrelationship(14). Only Eq. (13) enables us to relate the ex-
ing the mass in nuclei and intermediate assembly productgerimentally measured variable, the turbidity, to the theoreti-
since the latter do not contribute to the turbidity. With this cally relevant variable, the tubulin concentration, in a man-
notation, andf;, b;, andd; denoting forwards, backwards, ner that preserves the precision with which the turbidity is
and disintegration rate constants, respectively, the kinetiknown. Equation12) shows thatM will keep growing until
equations are c=0, so from Eq.(13) follows that M()=c(0). As ex-

+ v+M=c(0). (14

k
E n;
=0
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plained in the next subsection, the turbidityis proportional  scaling variables, one demands tlegtdoes not appear ex-

to the amount of polymerized tubuli, so we have plicity anywhere in the equations, but only implicitly,
through the scaling variables. It is this demand which en-
A(t)/A.=M(1)/M()=1—c(t)/c(0). (15  sures that solutions obey the scaling laws. It also forces

many terms out of the equations, because they contain ex-

With this simple relationship we avoid corrupting the preci- plicit powers ofc,. It restricts the possible kinetics to just
sion of the data with biochemical assaysc§0) and of the  gne set of equations:

relationship between turbidity and polymerized tubulin. In-

stead, we work with the relative variabdét)/c(0), and use dc, /dt=foc®™—f,cMcy, (16)
Eqg. (15) to relate this theoretical variable to the experimen-
tally measured variablé(t), a crucial practical point in our dg /dt=f;_;c"Mc;_,—ficMc; for 2=<i<k, (17)
analysis.

dv/dt= kaka ) (18)

A. Why A(t) =M (t)

We have considered and excluded the possibility that the

initial lag in turbidity in Fig. 1 is an artifact due to short while coupled nonlinear differential equations in general are

microtubules contributing less to the turbid{i5]. The tur- ot analytically solvable, this particular set is to quite an
bidities in Fig. 1 were measured with 350 nm light. At this gxtent.

wavelength, monomers and oligomers are transparent, while
microtubules longer than the wavelength— i.e., microtubules
containing more than 600 monomers— contribute to the tur-
bidity with an amount that is proportional to their lengthto a  The relevant initial condition for Eq916)—(19) is one

dM/dt="f,.cw. (19)

VI. ANALYTICAL SOLUTION OF MODEL

very good approximatio25], Fig. A2). with only tubulin present at timet=0: c=c,,
Our analysis of the turbidity time series in Fig. 1 showc¢,=c¢,=-.-¢c,=v=M=0.
that microtubule nucleation has dropped to less than 2% of EliminatingM, v, ¢, ...,C,, andc, from these equa-

its initial rate when microtubule polymerization has reducedtions, we find that satisfies the equation

the tubulin concentration to less than half of its initial value.

Microtubules polymerized after that point in time contribute K

even less than 2% to the total turbidity. Ignoring the latter H

microtubules, microtubules grow to a length of 350 nm in =t

times that are negligible relative to the characteristic times of

the turbidity time series. This is seen as follows: For lack ofyith initial condition

a direct measurement of the microtubule growth rate, we

interpolate results obtained in other buffers and at other tem- dic

perature§24,26—28, and estimate the rate in the buffer and c(0)=cy, —(0)= Ofori=1,2,...kk+1. (21

at the temperature used ifl7] to be approximately dt

1 pm/min/(uM tubulin). Consequently, in the most sensitive

case, that of highest initial tubulin concentration, 18M,

microtubules nucleated at half that concentration grow t

350 nm in 2 sec. This initial time interval, in which a micro-

tubule does not contribute to the turbidity with an amount f
r=

C*m

d 2 k+1
— cmz—m(H fi)cm,
i=0

dt

*md+f
ST

(20)

While nonlinear k+2)th-order differential equations in
eneral are not analytically solvable, this particular one is.
e introduce alternative variablesand vy,

tcm(t’)dt’, (22)
0

proportional to its mass, is negligible. For comparison, the
origin of time is defined by the temperature “jump” initiat-

ing nucleation; it lasts 15 sdd7].
y(1)=[c(t)/co]™ (23

These definitions were chosen to have™d/dt=d/dr, so
We need not solve Eq$9)—(15) before we look for so- that the nonlinear differential equatiq20) simplifies to a

lutions satisfying the scaling lawd) and (7). Instead, we linear differential equation

impose as ademand on the equation®)—(15) that their

solutions satisfy the scaling laws. This simplifies the equa-

tions very much, hence eases our task of solving them.
The demand is implemented by rewriting the generic

equations(9)—(12) in terms of scaling variables/t,, c/cy, This equation can be solved foras a function ofr,
ci/cy', M/IM(%)=M/cy, wheretyxc, ™. Here we have in-

V. CONSEQUENCE OF SCALING LAWS

k+1

v=—m(i=HO fi)y. (24)

d—I—f
ar i

n

d
dr

troduced the shorthand notatiop for ¢(0) and a parameter ktl (k+l
m which, according to Eq(7), has the value 3. In order to yn=2 | Il —=|expzn), (25)
demonstrate the generality of our approach, arguments, and i=0 ',-Z? 4=

results, we treain as if its value is unknown for as long as
we can. wherez;,i=0,... k+1, are thek+2 roots of the polyno-
Having rewritten the kinetic equations in terms of the mial
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Z2(z+f)) - (z+f ) +migfy- - fiiq, (26) Sincec, is created at a rate proportional ¢g, c, initially
grows proportional td2. c; grows at a rate proportional to
and we have used that the initial condition translates to  ¢,, hence proportional ta® initially. And so on, with M
growing proportional tot“*? initially. Only with M’s in-
crease from zero does(t) decrease fromcg, i.e.,
c(t)=co,—O(t*"?). So to leading nonvanishing orders we
have initially that

y(0)=1, d'y/d7(0)=0 forj=1,...k+1. (27

The solution forc(t) is then obtained in parametric form,

t=c, ™ JOTdT' Yy U7r), ct)=coy’™(7), (28 ca(t)="focgMt+O(t?), (30

Co(t) ="fof 13212+ O(1), 31
where the integral is known analytically only in the case of 2()=fol1Co () @D

k=0, i.e., for Oosawa’s model.
In all these equationd, andf,, ; occur only through the

productHik:(}fi , and are furthermore invariant under permu- k-1
tations off, f,, ..., f. This is so because the turbidity ck(t)z( 11 fi>c8‘+1)mtk/k! +O(tk ), (32)
depends on only the total summed length of polymers =

formed, and not on its distribution on microtubules, nor on
the concentrations of intermediate aggregates. This property
then carries over taM(t) and c(t) by Eqg. (15. Conse-

k

V(t)=(H fi)cgk”)mtk“/(kﬂ)!+0(tk+2), (33)
i=0

quently, any solution to these equations will dependfgn

andf, , only through their product, and dn, f,, ..., fin k+1

a manner that is invariant under permutations. Thus a fit of M(t):( IT fi)cg‘”)m“tk”/(kﬂL 2)1 +O(t<3).

such a solution to experimental data usig f, ..., fx. 1 =0

as fitting parameters can never determine them all, but only (34)
f1, ..., fi and the product,f,. Furthermore, for any fitted oy Eq. (34 we see that a plot of
§et of parameters in which thgs are not _ic_ientical for logyf A(t)/A. ]=log;d M(t)/M(s)] against logyt/t,)
i=1,...k there are other parameter sets giving exactly thenqid start out at early timesas a straight line with slope
same fit, namely, all permutations ofy( . . ., f).

. : k+2 independent of initial concentratian,.
_ Equations(16)—(19) are just one set out of a class of  hg jnset in Fig. 5 shows the experimental data plotted
similar sets of equations characterized by two parameters s way. The very earliest data points shown, those having

andk. All these nucleation-polymerization models are ana-p;a <102 are not measures of turbidity, but indicate the
lytically solvable but for one integral. The caselof 0, i.e.,  |imit of the turbidimeter's sensitivity. Later points initially

nucleation in a single step from monomer to nucleus, isg|| on a straight line with a slope that we now determine.
Oosawa’s model, and fully solvable with

c(t) = cocosh Um([mfoflcgm]mt). (29) B. Initial assembly kinetics: Phenomenology
Some care is required in order to extract an asymptotic
VII. DETERMINING THE NUMBER OF EQUATIONS behavior from noisy data. One can choose between robust

methods that willingly yield a result—which may be wrong

At this point in our analysis we have found more than wewithout much warning—and more refined methods that de-
need, a whole class of soluble nucleation models, parammand more from the data to function, but also give informa-
etrized by the two integers andk. We know tham=3, but  tion about a result’s reliability. 1f18] we used a robust
have yet to determin& from the experimental data. This noise reduction method to obtain a value for the number of
amounts to determining the number of equations in theequations, and found the vallke- 2=4.96. That result was
theory (16)—(19) from the data that the theory is meant to seducingly close to an integer value, as it should be, but this
describe. This is done by observing that all the equationsvas also the only cross-check we had on the result, and it
(16)—(19) are first-order differential equations in time—as could be the outcome of chance.
kinetic equations are—and that the variables they describe, In the present paper we apply a more systematic and more
(¢)i=1,... k. v, andM, all vanish initially, while each one demanding method, and firid falls between 3 and 4, with
of them initially increases at a rate proportional to the valuethe value 4 being favored. We fitted
of the previous one. Consequentiy(t) =tk 2 initially, and o ke
the number of equations follows froM(t)’s growth at early at*?+bt (35

times. The following subsection details this. _ . . .
to the initial part of each time series, usiagb, andk as

unknown, real fitting parameters, and fitting to data points up

to a cutoff time, measured in units of the characteristic time
The kinetics at early times is described by solving Eqgst, for each time series. The degree of justification with which

(16)—(19) to leading order iri. To this end we note that only we may use Eq(35) to describe théndividual time series’

c differs from zero initially, c(0)=cy, while c;=c,  early behavior is indicated by the size of the equation’s first

=---=c,=v=M=0 initially. c, is initially created at a term compared to its second term foequal to the cutoff

constant ratef,c3™, soc; initially grows proportional ta.  time. With ak value found in this manner for each time

A. Initial assembly kinetics: Theory
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FIG. 8. Estimates fok, the number of intermediate assembly ) ) o
stages in the kinetic theor.6)—(19), based on fits of the forr(85) FIG. 9. Two-parameter flt$ of the theoretical turbidity to col- _
to points in the experimental time series havidty, less than an lapsed experimental time series. The data collapse shown here is
upper cutoff. not as good as that shown in Fig. 5 because time was rescaled in

Fig. 5 with thet, values read off the time series, while here it is
series, we face th&t should have the same value for all time rescaled with§®®". Also, the present figure shows all series, includ-
series, according to our scaling assumption. We thereforiag obvious outliers(a) Fitting to time series 3-8 in data s&t as
calculated the mean of thke values found for individual ranked by final turbidity, gives the curve shown and parameter val-
series and the variance on this mean, and estimated the cones given in the second line of Table I. The two outlier series,
mon k value by the calculated mean, while estimating theshown as circles with and without crosses, are series 1 and 2, and
quality of this estimate by the magnitude of the variance; seare not included in the fit. Table | also gives parameters resulting
Fig. 8. from a fit to series 3—6(b) Fit to time series 2—8 in data sBt,

However, since the forniB5) is true only fort values so  resulting in parameter values given in the fourth line of Table I. The
small that terms of ordek** and higher can be neglected, as outlier series, shown as filled circles with crosses, is series 1, and is
we have done, our fits of this form to all data up to a cutoffnot included in the fit. Table | also gives parameters resulting from
time will depend on the value of the cutoff time, except in a fit to series 2—7.
the limit where this cutoff is taken to vanish. So at large
cutoff times our estimate has systematic errors in it, but according to our model. The size of the nucleus is
fairly small error bar, since we fit to many data points. Con-
versely, as the cutoff time is reduced, the systematic errors n=ng+n;+---+n=mk+2), (36)
are reduced, but the error bars on the estimate grow, because
the k values that we average over show more scatter wheso we conclude that the nucleus contams18 monomers.
obtained from fits to fewer data points; see Fig. 8. This figureThis number is close to the typical number of protofilaments,
shows very similar results for data seétsand B, thus con- 14, in self-assembled microtubulg2g]. It is also close to the
firming the experimental reproducibility of our results. Thesenumber of hetero dimers it would take to form a lock-washer

results do not point convincingly to an integer value, how-structure similar to that formed by tobacco mosaic virus’
ever. But since one must be choskr:;4 is the best choice, coating protein as a first step in its polymerization.

and certainly in agreement with Fig. 8, though the value 3
that we found with a less refined method[it8] is not en-

tirely excluded. IX. RATE CONSTANTS

We fitted the theoretical turbiditp(t) =A., [1—c(t)/cq]
VIII. THE SIZE OF THE STABLE NUCLEUS to the experimental time series, using the rate constants as
With both k andm known, we also know the number, fitting parameters, see Fig. 9. The theoretical turbidity was
of tubulin hetero dimers it takes to form the stable nucleusfound by inserting Eq9425) and(28) with m=3 andk=4 in
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TABLE I. Rate constants resulting from fits of model to experi- 08
mental time series. The first four lines of table entries give results
for two different fits of the theory to each of the collapsed data sets
A andB, as illustrated in Fig. 9. The first line of entries resulted 0.6
from a fit to time series number 3—6 in data setwhen the series
are numbered according to ascending final turbidity. The seconc_—
line of entries resulted from a fit to time series number 3-8 in data IE 0.4
setA, the third line to series 2—7 in data &t and the fourth line O,
to series 2—8 in data s&. The following lines of entries in the  <C
table resulted from individual fits of the theory to individual time
series, each of which is identified in column | by its final turbidity. 0.2
Columns Il and Ill: Values for parameterdl*'}f; and
f,=f,=1f;=1f, found by fitting model to given time series. Column
IV: x? per degree of freedom for the fit. Column V: The data set 0.0
that the time series belongs to. 0.5
| 1l Il v \%
0.4
A, <2, fi X3oF Dataset |} e
em™  (cm®*®min®) (cm®min) (dimensionless — 03 i
1
164 1.2 7.9 A, 3-6 g """"""
258 2.0 21 A, 3-8 < 0.2
209 1.6 56 B, 2-7
343 24 152 B, 2-8 0.1
0.142 499 35 0.5 B L :
0.146 372 2.7 0.4 A 0.0 i st ooy . .,
0.236 74 -0.19 0.3 B 0 30 60 80 120 150 180
0.274 52 -0.76 0.1 A t [min]
0.279 84 0.14 0.8 B
0.338 84 0.11 0.3 A FIG. 10. Two-parameter fits of the theoretical turbidity to indi-
0.365 134 0.82 05 A vidual experimental time series. Parameter values resulting from fits
0.371 115 0.64 1.9 B are given in Table I.
0.456 168 1.3 1.4 A )
0.471 236 19 56 B bly prqduct tu.rns |nt.o the next one at a rate@f1) or less
0542 208 16 48 B per minute, i.e., binding at mostD(lO)_ monomers per
0582 205 16 31 A minute. This rate should be compared with the rate at which
0.672 398 24 78 B _mlcrotubulles bind monomers at the same concentration. Us-
0'703 421 2l8 23 A ing 1 cm ~=20 uM tubulin as conversion factor between
’ ' turbidity and tubulin masg17], Fig. 2, the estimatd;~1
8;32 15(?923 23 (25511 g pmm/min/uM (see Sec. IV A above and that microtubules

contain about 1700 monomers per micrometer, we have mi-
crotubules binding approximately 27 000 monomers per
minute. Clearly, the creation of new microtubules is a much
Eqg. (15 and fitting its five parameterd,, f,, f3, f4, and  slower process than the growth of existing ones, even at this
II°_,f;, to the experimental data. For both data getndB highest concentration studied here. Any other result would
and in several fits with different initial values and stoppinghave been inconsistent with their existence. Because of the
criteria, we foundf ;= f,=f3=1f, up to insignificant numeri- large uncertainty on the value found fby=f,=f;=1,, the

cal differences. We consequently choseassumethis iden-  value forf,fs that can be extracted from the value found for
tity, and then fit again, now with a total of only two fitting the productll?_f; is too ill determined to be of interest.
parameters. Figure 9 shows the latter fits. The parameter val- |n addition to the reasons already given for the fastest and
ues obtained from fits to data seAsand B do not differ  slowest polymerizing time series, imperfections in the data
significantly. They are given in the first four lines of Table | collapse in Fig. 9 could be due to small changes in experi-
which show that the fitted parameter values are more sensinental conditions between the series, such as slight varia-
tive to whether or not one includes the series for the fastesions in temperature and buffer conditions. Such variations
assembly processes in the fit, and less sensitive to wheth@jould give rise to different values for rate constants describ-
the fit is to data sef or B. ing different time series, but presumably not change the ki-

The values given fof ;=f,=f;=1, andl'[i‘r;ofi in Table
| are rather uncertain, but they are not physically unrealistic
The largest initial concentratiorg(0), used in the experi-
ments gives rise to a final turbidity of 0.8 cm. Conse-

netics itself. To allow for this situation, we fitted the theory
to individual experimental time series, and found mostly
very good individual fits; see Fig. 10 and Table I.

Figure 10 and column IV in Table | show that except for

quently, at this initial concentration, one intermediate assenmthe very fastest nucleation processes in each data set, the
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theory fits the experimental time series extremely well. It is 0.5
not so surprising that the fastest processes are not model i
well. Already in Fig. 5, our phenomenological analysis 0.4 |
showed that these fastest processes differ from the genet )
data collapse. Since the model was developed to model tt I
latter behavior, we cannot expect it to also accommodate th w03}
former. We could not exclude that it would either, however, & i
. - O I
so the fact that it cannot, when we specifically try to make it = (.2
do it, indicates that the model is not arbitrarily flexible, but < I
has characteristic properties that are felt even on the sme
scale of the scatter in the scaling collapse in Fig. 5. Sectiol
XII B discusses these properties of model vs experimente .
data. 0.0 &
Table | also shows that though the model fits the very (a)
slowest nucleation processes well, the fits can be absurd t R S ——
yielding negative values for a positive definite rate constant I
Again, we already knew from the phenomenological analysit
that the slowest processes are anomalous relative to the sc
ing law in Eq.(7), hence should not be surprised that we get 02t
absurd results when we force the theory to fit time series the = i
do not have the properties that guided us to the theory. £
Figure 10 and Table | show that the theory fits very well £,
the time series in the middle of the experimental window. <C
Again, this is no surprise, since the theory was tailored tc
this purpose by tailoring it to the collapsed data which show
the best collapse for these time series. The quality of thes
individual fits is, however, better than one could possibly 0.0 [ R R
have expecteé priori. Figure 10 does not have sufficient 0 50 100 150
resolution to show the quality of the best fits of the theory to (b) t [min]
the data. Figure 11 shows two-parameter fits of the theory tu
two e?(perimem_al time series chosen from the middle of the 1 11, Two of the best fits in Fig. 10, enlarged to make error
experimental window. bars and quality of fit visible(a) Time series withA. =0.456
When discussing the quality of these fits, we should mengm=2, (b) Time series withA,.=0.274 cni . The error bars given
tion that they? values given in column IV in Table | should for the experimental data points are estimates. As estimator we use
not be taken too seriously. The error bars on the experimenhe instrument output at times so early that there was no input in the
tal time series’ data points that thegd values are based form of turbidity caused by microtubules; see the inset in Fig. 5.
upon, are not true, independent statistical errors, but just the
best we could come up with, namely, the instrument readingcaling violations in the data, arii) that the theory devel-
at vanishing input. The fact that we could fit several longoped here does not model the slowest and fastest nucleation
time series with &2 per degree of freedom which is signifi- processes for which we have experimental data. Natural ex-
cantly less than 1 is at least partly due to the fact that thglanations of this last point were given above, and more are
theory was tailored to fit these data, i.e., we have not acgiven below.
counted correctly for the number of degrees of freedom
when setting it equal to two, the number of independent rate X. TIME COURSE OF PRODUCTION RATES
constants fitted. But we may also have overestimated the
errors on the data points, and/or they may be correlated. Now that the experimental time series for the amount of
More important, we note a clear trend with, in the final polymer have yielded a model for the pathway of as-
values obtained for the fitted parameters, i.e., a systematigembly, we may follow that pathway, and see how it is tra-
error relative to the assumed scaling behavior. This trend weersed, i.e., follow in time the rates of production for its
noted already in the discrepancy to perfect collapse in Fig. Svarious intermediate products. Figure 12’s top frame shows
Since the theory was designed to be a scaling theory, it odhe tubulin concentration as a function of time in a typical
viously cannot describe these scaling violations. So when waucleation process chosen from the middle of the experimen-
force it to model the individual time series, the scaling vio-tal window, the one in data seA with final turbidity
lations show up in the fitted parameter values, the only placé..=0.456 cm %, The following frames show the produc-
where the theory can accommodate them. The range coveréidn rates for the various intermediate assembly products as a
by these fitted parameter values is indicative of how well wefunction of time, with the bottom frame showing the rate of
really know the parameter values obtained with the fit showrproduction of the final product, the microtubule polymer.
in Fig. 9. The values forfy and f; used to produce this figure were
The general conclusion resulting from these individual fitsthose in Table I, i.e., this figure shows the time course of the
is (i) that the model describes the data exceedingly welproduction rates leading to the theoretical turbidity shown in
when it does it besti) that there are small, but systematic, Fig. 11(a).
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= 00 e ———— the nucleation-polymerization process described also in Fig. 12.
N : © The zeroth and first moment of the distribution were normalized to
g 4.0 ' E unity, because the turbidity measurements analyzed here cannot
o opk ' 3 yield absolute numbers, either for lengths or for numbers of micro-
o 0.0 : o , tubules. The distribution’s form at small and large values ois
v p——————— ——— given in Egs.(44) and (46), respectively, wittbm=3 andk=4.
o, 30F n
% 20 1 remains almost constant initiallc/co~1 up to the tenth
£ 10¢ 1 time, t*". This is understood by noting thit, the amount
0.0 O —— — of final andsixth product, grows a$® initially, and therefore
B [ @ c/co=1—M/M()=1—0(t%) according to Eq(15). This
§ 05 1 slow initial decrease of the tubulin concentration was estab-
e lished as a mathematical property valid at infinitesimal times
- 0.0 t in Sec. VIl A above, and used to determine the number of

0.0 2.0 4.0 equations in the kinetic model. Figure(82now shows that

it is a good approximation up to the tenth time, a strong

indication that our procedure was at leastf-consistently
FIG. 12. Time dependence of tubulin concentration and producgorrect.

tion rates (in scaling units for fo=168.48 cnt¥min® and The scenario invoked in Sec. Il C to explain the turbidi-

f1_= 1.347 cn¥/min, as found from fit to exper_imental _time ;eries ty’'s exponential approach to its asymptotic value is also il-

with A..=0.4560 cn1'*. (a) Tubulin concentratiore vs timet; in  |\strated by Fig. 12: The rate at which new microtubules is

units of co andty*”, respectively (b)~(e) Rate Of.prOdPCti°¢i of formed, v, clearly vanishes before the tubulin concentration
w;tegre]ﬁdlate assembly producti=1, .. .,4, vstime; in units of 0o "5 "ot the latest times there is an essentially fixed num-
Co/tg™ . () Rate of production of stable nuclei vs time; in units o o microtubules present. They grow from the remaining
of Cg/té:eec:r- (9) Rate of productiorM of polymer vs time; in units  tyhylin, at a rate simply proportional to the remaining
of co/tg™". amount of tubulin; compare the latest part of the curves in

Figure 12 illustrates, among other things, that itiein- the top and bottom frames in Fig. 12.

termediate product is produced at a rate proportionaltd

at early times, which, combined with the vanishing initial XI. THE DISTRIBUTION OF MICROTUBULE LENGTHS
values, gives that théth intermediate product is present in
amounts proportional td initially, as discussed above. This
i dependence of the early rates is just a manifestation of the Figure 13 shows the theoretical final length distribution,
model's property that théth intermediate product is pro- p(/;t=), of the microtubules formed in the nucleation-
duced from the i(—1)th product. The relative locations of polymerization process described also in Fig. 12. Since we
the maxima in the rates shown is another manifestation ofan determine neither lengths nor numbers of microtubules
this property. The vanishing of the rates at late times, on théom turbidity time series, the distribution shown is the rela-

other hand, is similar for all rates except the ladt, The tive one, normalized to unity,

other five rates vanish as, we know, and that includes, @
though it vanishes from negative values, because its produc- f d/p(/;0)=1, (37)
tion from monomers vanishes faster, &5 than the rate at 0
which this first assembly product turns into the next one.
Figure 1Za) also shows that the tubulin concentration and the length it depends on is also relative,

A. Theoretical results
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% - [31,32, and its Fourier transform by synchroton radiation
fo d7/p(/*)=1. (38  ([33] and references thersinThe formulas just derived show
that an experimental measurement of the final length distri-

We found this length distribution by combining our bution of microtubules, obtained after nucleation and poly-
knowledge of the rate/(t) at which microtubules form at merization has run its course, can providgiple test (.)f the
any timet with our knowledge of the velocity,, ; X c(t) theory presented here. The simplest test consists in measur-

. ) . ) ing the length distribution experimentally and comparing it
W'th Wh'fh they grow. Thus a F“'C“’t”b“'e hgvmg length with Fig. 13. But with sufficient experimental data, there are
at timet=co was created at a timerelated to/” by

two additional tests of the theory: Its two integer parameters,

% m andk, are found not only from the turbidity time series,
/’=fk+1f dt'c(t’). (399  but again in the final length distribution. While this second

! determination ok related directly to that obtained from the
time series, the second determinationnofrelates to a par-
ticular stage in the nucleation process, the formation of mi-
crotubules from the last intermediate assembly product, as
seen from Eq(42). This stage cannot be observed as directly
in the turbidity time series as it can in this analysis of the
final length distribution.

At that time of creationf, microtubules were created at the

rate »(t). Thus the number of microtubules at time infinity
with lengths in an intervatl/” at / is

p(/,0)d/ = p(t)dt, (40)
wheredt is related tod/” through
d/ldt="f,c(t), (41

XIl. BEYOND SCALING

Although the theory presented above describes the turbid-
so that ity time series with precision, it is only an approximate
theory. It was obtained by assuming scaling, a property that
(1) fi B is only approximately satisfied by the experimental data. But
p(/,)= fc T Gdbe®” L (42)  pecause it is satisfied to a good approximation, the theory
Kl k1 presented above is also a good starting point for a search for
This is the distribution shown in Fig. 13. Similar argumentsa more precise theory.
give p(/;t) at any finite timet. These distributions at earlier
times are, however, just the distribution shown in Fig. 13
translated towards shortet values and truncated at=0.

Our analytical understanding of early and late nucleation Clues to the properties of an improved theory must be
and polymerization, as described by our model, translate®ound in the systematic differences between the experimental
into a similar understanding of the length distribution for thedata and the scaling theory derived above. To this end, we
longest and shortest microtubules. The shortest microtubuleggoserve that the experimental time series analyzed here ac-
were formed at the latest times, whargt) =c, (), while  tually contain more information than we have used. This
c(t) vanishes as a simple exponential. Used in B§), this ~ shows up in two ways. First, the scaling violations that one
gives can observe in Fig. 5 at late assembly times, display a trend

with A, : the larger the initial tubulin concentration is, the
/=c(t) for /=0, (43)  slower is the approach of the time series to its asymptotic
) ] ) ) value, when measured in scaling variables, as done in that
wheret is the time of creation of the microtubule of length figure. Second, the approach to the asymptote is exponential
/. Consequently, by Eq42), in time, as illustrated phenomenologically in Fig. 3, and fol-
(/) /™1 for /~0. (44) Iowing.theoretically from Eq.(fi)a. But while we _fognq the
tenth time,t,, proportional toA_, °, the characteristic times,
The maximal length a microtubule can have, according td-., of this exponential approach, defined as

our nucleation model, is
A.—A(t)xexp —t/t.,) 47

A. Systematic scaling violations, |

 ma=f fxdt'c t’). 45
max— Tk ) (t) 49 do not quite obey this power law; see Fig. 14.

_ ) ) If the experimental time series did scale perfectly and
The longest microtubules were formed at the earliest timesyjiiy toxAL3, thent,, /tiheor

g > . o would be constant, independent
‘élvtt‘eer:‘;;(t)zco’ hence/ ma—/t, and c,(t)=t*. Conse- ot A " in Fig. 14. The plot shows a trend, however, or the

two largest turbidities in each data sAtandB, label outli-

N oy ers. These outliers are not statistical in nature, but system-
P(732) o/ max= /)" O /= max: (46) atic, since both data sets and B display them for both
series with largest final turbidities.

Note, however, that by focusing oA.—A(t) at late

The length distribution of microtubules is experimentally times we are focusing on only a small part of the whole
measurable. It has been measured in other experiments hylue of A(t). So there is no grave contradiction in practice:
fluorescence microscopy30], by electron micrography A(t) itself can scale witho< A3 to a good approximation,

B. Experimental triple test
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FIG. 15. Characteristic time of maximal relative polymerization
rate, tma= 1/max] —dlog;,c(t)/dt] in units of tT°'=(0.41+0.01)
min cn?x A} 2 plotted for each experimental time series against its
asymptotic turbidityA... The straight lines through the data are
separate fits to data seAsandB, and have slopes 0.33.05 and
0.33+0.06, respectively. In the case of perfect scaling these slopes
while the small, late increments A(t) simultaneously show should not differ significantly from zero.
significant scaling violations.

FIG. 14. Characteristic time, of each experimental time series’
exponential approach to its asymptotic turbidiy in units of its
theoretical tenth time'®®= (0.41+0.01) min/cmx A, >—plotted
against its asymptotic turbidityA.. .

C. Systematic scaling violations, Il

The time series corresponding to the largest initial tubulin
concentrations signal some disappearance of microtubules at
intermediate times when analyzed in terms of our theory, we

Focusing orA.,,— A(t) at late times, reveals gualitative  just saw, hence cannot be fully reproduced by our theory.
limitation, as well, of the theory presented here. Plotted as iMhe insights of the preceding section may explain the outli-
Fig. 3, theslopeof the time series is ers at the largesA,, values in Fig. 14. The too large values
for t., /tT*° correspond to too small values for the final num-
ber of microtubules because

B. Features in data that ordinary differential equations
cannot model

d _d G
&'0910[Aw_A(t)]— abgloc(t) == Wfk+lv(t)

“8) t;1=—lim %Ioglo[Aw—A(t)]oc Ve (49)

t—oo

according to Egs(15) and (19), i.e., the slope equals the

number of microtubules that have been nucleat€t), up to

a constant. According to our theory’s E38), this number is

nondecreasingnicrotubules never disappearhis is a tech-

nically important feature of the theory, because it makes it d

possible to formulate the kinetic equations for the total tr;;(: ma><——|oglo[Aoo—A(t)] . (50)

amount of polymer formed as a finite number of ordinary dt

differential equations: The amount of polymer grows by ad-

dition of monomers to existing microtubule§ncluding  For time series showing no disappearance of microtubules,

stable nuclej and the number of these microtubules andtmax=t-, and this is the case for most series. But where

nuclei is entirely given by the kinetics describing their for- there is a difference, our theory has a better chance of de-

mation in a finite number of steps, as described above.  scribing the dynamics only up to the time where the number
If, on the other hand, the number of microtubulgs-  of microtubules is maximal.

creasesat any point in time—as we observe in the rightmost ~ Figure 15 Shows ./t plotted againsf\... Compar-

time series in Fig. 3 whose steepest slopes are steeper thang with Fig. 14, we note that the outliers have disappeared.

their final slopes—then, obviously, we observe a phenom{Note change of scale on second axBut there is still a

enon that is beyond our theory. No theory based on a finitsignificant trend in the plot, i.e., significant scaling viola-

number of ordinary differential equations can describe thigions.

phenomenon correctly. Since microtubules disappear by de- The fact that we can isolate a systematic scaling violation

polymerization from their ends, only a theory having thein the time series shows that the scaling theory presented

length distributionsof growing and shrinking microtubules here does not exhaust the experimental information hidden in

as dynamical variables, can describe this correctly. Such the series.

theory involves partial differential equations, as in the model We have tried to modify and extend the theory in such

for microtubule oscillations described [@1]. ways that the scaling violations described here are accommo-

So instead of the final number of microtubules present we
focus on theirmaximalnumber, and the characteristic time
tmax fOr the corresponding polymerization rd@4],
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dated in a natural, perturbative way. A natural starting poinfperimentally that there is, indeed, within a few percent, a
for minimal modifications of the theory is the theory’s coop- simple proportionality between polymerized mass and mea-
erative kinetics. We have tried to time resolve more steps o§ured turbidity for turbidities from 0.1 to 0.4 caused by mi-
the assembly pathway already established with the scalingrotubules nucleated and polymerized in bulk, after equilib-
theory. We have varied the cooperative nature of steps byium has been acquired35], Fig. 4. Related results were
floating n; in combined fits of the theory to whole data sets,obtained by Voter and Erickso(f17], Fig. 2. However,

A andB, in a manner that affects the theory mainly at lateGaskin, Cantor, and Shelanski also demonstrated that the
times, where scaling violations show in the data, whileturbidity to some extent depends on the length distribution of
barely affecting the theory at early times, where the datahe microtubules: By 30 seconds of sonication they reduced
scale well. We have tried to form the first intermediate asthe average length of a sample of microtubules by a factor 5
sembly product in two parallel pathways, one being the oneer more, judging from micrographs. The turbidity at 350 nm
step procedure described above, the other being a two-stensequently dropped by approximately 15%. But sonication
procedure combining three monomers at a time. In this wayor more than 2 minutes actuallincreasedthe turbidity

we did find theories with modest scaling violations which above that of control samples, so it is not entirely clear what
fitted the experimental time series better than our scalingvent on, especially whether the total amount of polymer re-
theory. But the approach was entirelg hoc the improve- mained constant during and after sonication. Thus it might
ment was guaranteed by the fact that we added new fittinpe of some interest to repeat this experiment with microtu-
degrees of freedom to an already good theory, and finally thbules stabilized, e.g., with glycerol and no free tubulin
improvement was not dramatic, hence giving no clue to gresent in order to test to which extent the turbidity depends
lessad hocapproach. Add to this that the scaling violations only on the summed total length of polymer, and not on the
we try to describe occur at late times, where they are mixedength distribution of the polymers.

up with the effect of disappearing microtubules, a phenom-

enon beyond any small modification of the theory. Then we C. Microscopic interpretation of the kinetic model

have given our reasons for not pursuing the scaling viola-

tions further. As it stands, the theory fitted to the data gives

f,=f,=f;=f,. This identity combined with the identity
n;=n,=n;=n,=m indicates that it is theamemechanism

XIll. DISCUSSION that stabilizes each of the intermediate assembly aggregates.
o A single allosteric effect involvingm=3 tubulin het-
A. Scaling violations erodimers could be a simple microscopic explanation of this

We have not overlooked the fact that we introduced aridentity. In this microscopic picture, triplets of tubulin hetero
approximation with Eq(13). However, one shouldottry to  dimers are added successively to the sixplet first formed, to
“improve” the theory by replacing Eq(13) with Eq. (14).  form the nucleus of 18 dimers. One should be very cautious,
For one thing, this would introduce an additional unknownhowever, about such a microscopic interpretation, because
parameter,c,, by severing its simple proportionality with there is a simple, mathematical interpretation of the identity
A... But from the experimental fact that typical microtubules f1=f>=f3="f,: We saw above from the exact solution to
contain thousands of monomers it also follows that the apthe model that any fit to the experimental data which would

proximation introduced with Eq13) is verygood, much too ~ result in nonequal values fd, .. ., f,, would also be ob-
good for the difference to Eq14) to explain the scaling tained from any permutation of these parameters. Thus the
violations in the data. x? landscape over the space of fitting parameters has as
many degenerate minima as there are different permutations

B. Relationship between turbidity and polymer mass of the four fitting parameters,, . . ., f,. The simplest land-

scape is one with only one minimum, corresponding to

; ¥1=f,=f3=f,. Thus relatively rich and complex experi-
total amount of polymerized mass and the measured turbidy,antal data are necessary to sustain what appears to be a
ity, and this assumption played a key role in our argumentsyqeric set of values fdr, . . . ,f4, while the simplest pos-
because' it allowed us to identify the relative turbidity, €., sible situation, data sustaining only a single minimuny
A/A.., with the relative amount of polymer formed, and fur- leads to identical parameter valuds . hence an
ther, by virtue of Eq(13), with the relative concentration of o

tubulin. Th d onality all q o rid identity in the model’s reactions which seems to require a
ubulin. The assumed proportionality allowed us 10 11d OUr-gqsia| mechanism to assure its presence. There is, of course,
selves of the unknown absolute scales of polymer mass a

. . . : . so a special mechanism in effect that assures the identity: It
tubulin concentration by working with relative amounts, and

. . ; o is symmetryunder the permutation group of four elements,
it also allowed us to use directly the relative turbidity for the y . P group

: . . .Sy, that, in the | f high- hysics, “protects”
relative polymer mass, instead of corrupting the good premfﬁ‘e idZntli?y ofetﬁgggtae%? ot high-energy physics, “protects

sion of turbidity measurements with the bad precision of
biochemical assays in a calibration of the turbidity’s relation-
ship to polymer mass.

The assumption of proportionality is only correct, how- The model presented here is somewhat supported by in-
ever, in a reasonable approximation for microtubules withdependent experiments done at @5-30°C, which mea-
lengths exceeding the wavelength of the light used to measured the nucleation ratv/dt at constant tubulin concen-
sure the turbidity, here 350 nih25], Fig. A2) as discussed tration by counting the number of individual microtubules
above. Gaskin, Cantor, and Shelanski have demonstrated elseing created, as seen through a microsd@& This rate

We have assumed a simple proportionality between th

D. Support for model from other experiments
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was found proportional to the tubulin concentration to theeters of Oosawa’s model could have been determined unam-
power 12+2, which does not seriously disagree with the biguously in a straightforwardinglefit of its scaling form to
power 18 predicted here, considering the errors possible ithe collapsed data.
both approaches. Rather, one should focus on the fact that
both approaches give values in the same low range. XIV. CONCLUSIONS

But if we tentatively do take seriously the value we have ] . )
found for the size of the stable nucleus, we note that its 18 Before one can conclude anythlng regarding a scenario
hetero dimers are very close in number to the typical numbefor the molecular pathway of microtubule self-assembly, the
of protofilaments in microtubules, 13, 14. This then suggest&inetic model derived here must be supplemented with more
that the stable nucleus may be a single ring or protoheli@nd independent evidence. It would also be interesting to
(“lock-washer”) like those formed by the coating protein of Mmeasure tur_b|d|ty time series at @ffgre_nt temperatures. The
tobacco mosaic viru§37,3. Remarkably,y-tubulin forms slower kinetics qnd Ionger tubulin lifetimes at lower tem-
ringlike structures of size similar to our nucleus in cen-Peratures make it possible to study assembly at concentra-
trosomes, where it participates in vivo nucleation of mi-  tions |nacceSS|bIe at 3T. Similarly, it vyould be interesting
crotubules, though it is not known exactly hg@8]. It has, ~ to monitor self-assembly from tubulin liganded with the non-
however, been demonstraté vitro that y-tubulin binds  hydrolyzable GTP analog GMPCCHguanylyK{a.3)-
tightly and exclusively to the minus ends of microtubules inMethylene-diphosphondte since such tubulin  nucleates
a saturable fashion with a stoichiometry of 12469 mol-  faster[23], hence allows us to study self-assembly at lower
ecules per microtubulg39]. Taken together, these experi- concentrations. If the scaling behavior descrlbed_ here is ob-
mental results indicate that a ring gftubulin the size of our Served at different temperatures and concentrations as well,
nucleus nucleates microtubules in centrosomes. Hence it [9at provides further evidence that there is, indeed, a definite

natural to speculate whether the nucleus discussed in tHfesSembly mechanism responsible for the data.
present paper has the same shape. For now, we may conclude about turbidity measurements

that this simple physical method can yield data of sufficient
quality to sustain a rather rigorous mathematical analysis.
About the mathematical analysis, we may conclude that it
sometimes is possible to solve timverse problemto find a
Even if the reaction pathway found here turns out to be ngeaction’s path from its products. Thus, by combining a
more than a mathematical mirage, it remains the most presimple, but precise, physical measure with a systematic
cise mathematical substrate of the information in the datamathematical analysis we have created a “microscope”
until a better fitting model is developed. Our systematic derithrough which one apparently may “observe” some other-
vation of the model should also be of value by itself, i.e., aswise inaccessible details of a biochemical self-assembly pro-
a procedure. Compare it, e.g., with the way that the relevangess. It would be interesting to obtain independent confirma-
Oosawa model was found [®]: There, two time series for tion of these “observations” and to study other processes in
the self-assembly of actin were analyzed separately, anghis manner.
Oosawa’s model was found to fit both well, but with ill de-

E. The value of phenomenological data analysis
and systematic modeling
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