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Microtubule dynamics. II. Kinetics of self-assembly
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Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown poten-
tial from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an
unknown chemical reaction from quantitative information aboutits final state and its dependence on initial
conditions—except it is known to be impossible for equilibrium reactions. This article presents a case study of
a far-from-equilibrium reaction: it presents a systematic phenomenological analysis of experimental time series
for the amount of final product, a biopolymer, formed from various initial concentrations of monomers.
Distinct mathematical properties of the kinetics of the unknown reaction pathway are found. These properties
are shown to restrict the kinetics to a single model that generalizes Oosawa’s classical nucleation-
polymerization model. The methods used here to analyze the self-assembly of microtubules from tubulin are
general, and many other reactions and processes may be studied as inverse problems with these methods when
enough experimental data are available.@S1063-651X~97!08011-2#

PACS number~s!: 87.10.1e, 82.35.1t, 87.22.Bt, 02.30Hq
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I. INTRODUCTION

Scientific theories are usually not unambiguous con
quences of experimental findings. The present paper
scribes a theory which nearly is. It is a kinetic theory, d
rived from experimental data for a nonequilibrium reactio
The amount of final reaction product, a polymer, is mo
tored in time for several traverses of the reaction pathw
traverses differing only with respect to the initial concent
tions of monomers. A mathematical analysis of the result
experimental time series leads directly to a kinetic model
the reaction pathway.

A. Inverse problem

What is solved here is a so-calledinverse problem, i.e., an
unknown cause is determined from its known effects.
physics, a classical example of an inverse problem is p
vided byinverse scattering theory:Particles are scattered o
each other with various energies, and from the scattering
one tries to deduce the interaction potential between the
ticles. This problem is well studied, and the mathemati
requirements for existence and uniqueness of a solution
understood@1,2#.

In chemistry or biochemistry one can formulate an ana
gous inverse problem: what is the information necessary
sufficient to determine a reaction mechanism from the re
tion’s products? It is well known that one cannot find
unique mechanism from a kinetic analysis of asteady-state
situation@3#. Nonequilibrium situations reveal more informa
tion, we shall see.

*Present and permanent address: Riso” National Labora-
tory, DK-4000 Roskilde, Denmark. Electronic addres
Henrik.Flyvbjerg@Risoe.dk
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B. Biological self-assembly

The process studied here is an example of biological s
assembly, the spontaneous assembly ofmicrotubules.Micro-
tubules are extremely rigid protein polymers which provi
rigidity where it is needed in eukaryotic cells. Self-assem
has been described for subcellular structures ranging f
the simple actin polymer filaments of, e.g., muscle fibers
the highly complexT-even bacteriophages@4#. Models ca-
pable of quantitative reproduction of experimental data e
for the polymerization of actin@5–11# and deoxy sickle he-
moglobin @12–14#.

The shortage of reliable quantitative models is not due
lack of experimental data. Nor is it due to lack of interest
understanding these processes. The clinical implications
the treatment of sickle-cell anemia following from the k
netic model developed in@12–14# underscore this point dra
matically. What seems to be missing is a systematic
proach to the inverse problem: The self-assembly of a
polymers is sufficiently simple that the correct model cou
be guessed, essentially, it being the simplest poss
nucleation-elongation model one can write down. Similar
the double nucleation model for deoxy sickle hemoglob
was essentially guessed from clever experiments, and
not pushed to describe more than the initial stage of ass
bly.

Both actin and hemoglobin form fairly simple linear poly
mers, making this approach to modeling possible. M
complex systems require a more systematic approach.
crotubules are polymers with a helical lattice structure, l
flagella and tobacco mosaic virus, and their complexity ra
a step above that of actin and deoxy sickle hemoglobin,
below, e.g., the icosahedral capsids of spherical viruses@15#.

In the present article we analyze the rich data available
the nucleation and polymerization of microtubulesin vitro
from solutions of purified tubulin. Under appropriate cond
tions, tubulin spontaneously assembles to form the cylin

:
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7084 56HENRIK FLYVBJERG AND ELMAR JOBS
cal five-step helical ‘‘crystal lattice’’ constituting a microtu
bule, see @16# Fig. 1. During the assembly reaction
discussed below,a and b tubulin monomers are perma
nently bound together in pairs, tubulin hetero-dimers, wh
therefore areeffective monomersof the reactions studied. S
whenever we use the word ‘‘monomer’’ in the following, w
are referring to these effective monomers.

C. Turbidity time series

The data analyzed here are shown in Fig. 1: The plott
symbols are experimental time series for theturbidity A of
16 different solutions of tubulin in which microtubules gro
in the presence of glycerol@17#. The turbidity is a simple and
precise physical measure of the amount of tubulin that
polymerized at any given time during assembly; see bel
These time series define our inverse problem: we assume
they all resulted from the same assembly pathway, initia
with different initial concentrations, and then try to find th
pathway from the time series. As in@17#, we will distinguish
between the eight time series measured in one set of as
bly runs and shown with filled symbols, and the other eig
series measured in another, independent set of assembly
and shown with open symbols. We refer to them as data
A andB, respectively.

FIG. 1. Turbidity versus time of tubulin solutions in which
temperature jump from 0oC to 37 oC at time 0 has induced mi
crotubules to self-assemble. Open symbols: Time series obta
from eight different initial concentrations of tubulin~@17#, Fig. 5!,
referred to asdata set Ain the present paper. Filled symbols: Tim
series obtained from eight independent assembly runs with e
similar initial concentrations of tubulin~@17#, Fig. 9!; referred to as
data set Bin the present paper.
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The model we find here generalizes the classical mode
Oosawa and co-workers@5–7#. It is analytically soluble up to
one integral despite its highly nonlinear nature. More imp
tant, though a specific reaction is analyzed here, the meth
used are general, and may be applied to a wide rang
reactions, provided sufficient experimental data are av
able.

D. The logical steps

The logical steps leading to the assembly kinetics may
summarized as follows. First, we observed that the time
ries seem toscale. We therefore analyzed them for this pro
erty, and found that they display so-calledphenomenological
scaling to a good approximation.

If this scaling property were exact, the individual tim
series would be fully characterized by one characteristic
bidity scale and one characteristic time scale, while its ov
all behavior is common to all the time series, and describ
by a single function. This simple phenomenology is typica
displayed by processes which are dominated by or consis
a single mechanism. It vastly simplifies the task of modeli
because all series are described by the same unknown f
tion, rather than each series by its own. For this reason,
demanded that our unknown theory should scale, know
that it would only be an approximate theory then, but a go
approximation.

Second, we considered the dependence of the charac
tic time on the characteristic turbidity. Both were read off t
experimental time series, so their relationship could be fou
without knowing the assembly kinetics. We found a rema
ably simple and robust relationship, namely, that the cha
teristic time is inversely proportional to the third power
the final turbidity.

Third, we interpreted these results as indicating simplic
of the assembly process, hence assumed a single pathw
assembly would be adequate to describe the experime
data. We wrote down a generic model for this and deman
that its solutions scale as just described. We found that th
requirementsuniquely determinethe model up to the numbe
of assembly steps in it, and the values of the rate const
for these steps.

Fourth, we realized that the number of assembly step
revealed in the initial growth of the time series, and analyz
this growth. We found that the series grow with time to t
sixth power. This result means that a stable nucleus for
lymerization is created infive steps and is made from 1
tubulin hetero dimers. Thus the kinetic model was uniqu
determined up to five rate constants.

Fifth, we solved the kinetic model exactly up to a sing
integral. The model is described by six coupled nonline
first-order differential equations in time, but because of th
scaling properties, these equations can, nevertheless
solved.

Sixth, we fitted the solution of the kinetic model to th
experimental time series, using the five rate constants as
ting parameters. Four of these rate constants set the rate
similar processes, and turned out to have identical val
when fitted to the data. So we might as wellassumethose
four rate constants to be equal, and work with a tw
parameter theory. That theory is our final model, and is
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56 7085MICROTUBULE DYNAMICS. II. KINETICS OF . . .
one shown fitted to the experimental data in Figs. 9–11.
A brief version of the analysis presented here was gi

in @18#. The present paper is the second of three that all ap
the modeling tools of theoretical physics to different aspe
of the complex dynamics of microtubules. The first pap
@16# modeled the cause of so-calleddynamic instability
@19,20#, a phenomenon observed in microtubules that h
not been stabilized like those discussed here. Specific
the stochastic dynamics of the so-calledcap was modeled,
and found to provide a common explanation of different e
periments. The third paper will more thoroughly discuss
realistic model of so-calledmicrotubule oscillationswhich
was briefly presented in@21# and builds on the modeling
presented here and in the first paper of the triology.

II. PHENOMENOLOGICAL DATA ANALYSIS

A. The scaling ansatz

The experimental time series shown in Fig. 1 all ha
similar sigmoid shapes. We therefore ask whether they di
only through different overall time and turbidity scales.
this is the case, they are said toscale, meaning all 16 time
series can be described by asingle function f as

A~ t;A`!5A` f „t/t0~A`!…, ~1!

a property which obviously would reduce the task of mod
ing significantly. Heref is a dimensionless function of
dimensionless argument, and interpolates between 0 an
In Eq. ~1! we distinguish the 16 time series and correspo
ing characteristic timest0 by the asymptotic valueA` of the
individual time series. These asymptotic values are ea
determined with precision from the series, as we shall se

The relationship~1! is more easily determined by plottin
A againstt with double-log axis, since Eq.~1! implies that

log10A5 log10A`1g~ log10t2 log10t0!, ~2!

whereg(x)5 log10@ f (expx)#. Equation~2! shows that if scal-
ing is satisfied, different time series fall on curves which a
identical, apart from being translated vertically and horizo
tally relative to each other by amounts given by log10A` and
log10t0, respectively.

The experimental time series in Fig. 1 are replotted w
double-log axis in Fig. 2. We see, indeed, that the se
seem to be translates of each other with few excepti
which we shall return to. In order to test the validity of th
similarity, we need to findt0 andA` for each individual time
series, translate the plots of the series by these amounts
inspect the degree of collapse of the resulting plots.

B. Determining A`

The asymptotic turbidityA` can be obtained with bette
precision than any other number we shall discuss, beca
A` is approached exponentially fast in time, i.e., in a sim
and distinct manner that allows us to extrapolate from
data at late, but finite, times to a value forA` which truly
corresponds to time infinity. At this point in our line of de
duction, it is a purely phenomenological observation that t
approach is exponential. The observation is made for a g
time series, and its value forA` is determined with precision
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by finding the value forA` which gives the best straight-lin
fit to log10@A`2A(t)# plotted againstt at late times. While
this procedure may be ambiguous in general, it is not in
present case, because the exponential approach is very
tinct in the data. Figure 3 shows that approximately the l
third of the data points in each time series displays this
ponential approach to its asymptotic value.

C. Why A` is approached exponentially fast

From a theoretical point of view, an obvious interpret
tion of this exponential approach offers itself. The amount
polymer present, hence the turbidityA, grows at a rate which
is proportional to the number of microtubules,n(t), and to
the remaining amount of tubulin,c(t),

dA~ t !

dt
}n~ t !c~ t !. ~3!

FIG. 2. Same data as in Fig. 1, plotted asA(t) against timet
using double-log axis.

FIG. 3. Demonstration that a turbidity time series approaches
asymptotic value,A` , exponentially fast in time.A`2A(t) plotted
againstt. A(t) is an experimental time series, whileA` is a value
chosen for each series so as to makeA`2A(t) fall on a straight line
at late times in this plot.t is given here in units of a characterist
time, t0

theor, which is introduced below, and here only serves
make it possible to show several time series in one plot. The of
D serves the same purpose.
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7086 56HENRIK FLYVBJERG AND ELMAR JOBS
The microtubules in these experiments are stabilized w
glycerol and cannot depolymerize again, once they h
formed, so we may assume that all the tubulin initia
present in solution eventually ends up being polymeriz
Then

c~ t !}A`2A~ t !, ~4!

hence

dc~ t !

dt
}2n~ t !c~ t !. ~5!

If, as expected, nucleation of microtubules is a coopera
process involving several tubulin molecules, then nuclea
of new microtubules will terminate faster than the polym
ization of already existing microtubules, because the latte
proportional toc(t) while nucleation depends on a high
power ofc(t). Consequently,n(t) will reach its asymptotic
value n` , faster thanc(t) reachesits asymptotic value, 0,
and at late times we have

dc~ t !

dt
}2n`c~ t !, ~6!

which shows thatc(t), henceA`2A(t), vanishes exponen
tially fast in time, as we found for the experimental tim
series.

If we accept this interpretation of the late third of ea
time series, we must obviously extract information about
nucleation process from the initial two-thirds of the seri
Not even the final number of microtubules,n` , can be de-
termined from the late part of the experimental time ser
This is because the turbidity measures only the total amo
of polymer present, i.e., the summed length of microtubu
present, and cannot distinguish many short microtubu
from fewer, longer microtubules.

D. Determining t0

Having determinedA` for each time series, we replot th
series asA(t)/A` vs t with double-log axis. This was done i
Fig. 4, and the series do seem to be identical up to a tr

FIG. 4. Same data as in Fig. 1, plotted asA(t)/A` against time
t using double-log axis.
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lation along the logt axis, except for the two slowest assem
bling series, marked with crosses inside circles.

To test for this last property, we read the so-calledtenth
time, t0, off Fig. 4 for each time series. Thetenth timeis the
time when a series has reached one-tenth of its final va
The choice of one-tenth is conventional@17#, and convenient
for our purpose, since we can easily obtain the tenth ti
with precision from Fig. 4. We then replotted the series
A/A` againstt/t0 in Fig. 5. Other definitions, e.g., half time
can be used and lead to similar results.

E. Data collapse

Figure 5 shows that the relationship in Eq.~1! does, in-
deed, hold to a high degree for almost all of the time seri
Only the two time series plotted as crosses within circ
appear anomalous. They describe the twoslowestassembly
experiments, starting with thelowestconcentrations of tubu-
lin, and lasting for over two hours.Aging of tubulin is well
known to occur over such long times at 37oC, and may be
responsible for their anomalous forms. We exclude these
ries from the analysis on this ground. They define one side
the experimental window for microtubule assembly.

Any sensibly chosen curve representing the remain
time series would differ at most 10% from the worst case
the worst time. So even before we know the theory that

FIG. 5. Experimental data from Fig. 1, replotted here with t
same plotting symbols, but asA/A` againstt/t0, demonstrating data
collapse. Open symbols: data setA. Filled symbols: data setB.
Insets: same plotted with double-log axis.
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are looking for, we know which precision we may achie
with it.

In the remaining time series, it is the time series cor
sponding to thehighestinitial concentrations andfastestas-
sembly dynamics that differ from the others at late times
Fig. 5. This is so for both data setsA andB, and shows that
the discrepancy is systematic. It is known from electron m
croscopy that at these highest concentrations, in additio
microtubules, other assembly products also form@17#. This
is a good reason not to worry about the way these time se
differ from the rest when they do—they are close to the ot
side of the experimental window for microtubule assemb
Instead, we focus on the fact that the other series coin
well.

Experimental data are always noisy on some scale, he
can never display a perfect collapse. The imperfection of
data collapse in Fig. 5 is not due to the experimental e
bars that we estimate below, however. So it is a matte
taste and preference whether one accepts the collaps
such. We do, because it is a great mathematical convenie
potentially leading to a theory that is at least 90% corre
Once that scaling theory has been established, one may t
describe the last 10% difference between theory and exp
mental data asscaling violations, using a perturbative ap
proach with the 90%-correct theory as the starting point
leading approximation.

F. The relationship betweenA` and t0

The values fort0 that we read off Fig. 4 are plotte
against the corresponding values forA` in Fig. 6. This figure
shows quite convincingly that

FIG. 6. Double-log plot oft0(A`) vs A` . Circular symbols
show results for data setA. The full straight line is a fit to the six
filled round symbols which most distinctly fall on a straight line. I
slope is22.9760.05. The two time series corresponding to the t
open round symbols appear anomalous, maybe because they
scribe the slowest assembly processes in data setA, and tubulin at
37 oC denaturates after a while. But their inclusion in the fit ob
ously would not change its outcome. Square symbols show re
for data setB. The dashed straight line is a fit to the seven fill
square symbols which most distinctly fall on a straight line.
slope is22.9060.09. The intercepts of the two straight lines wi
the second axis do not differ significantly, and give the constan
proportionality in Eq.~7! as 0.4460.03 min/cm3.
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t0}A`
23 . ~7!

This relationship is surprisingly simple. Like the scalin
property, this simplicity indicates that a single pathway
responsible for the assembly reaction studied here, e
though the total amount of tubulin polymerized in these
actions varies by a factor larger than 3, and their time sca
by a factor larger than 30. Both the scaling property~1! and
the power-law dependence~7! are of a precise mathematica
form. Thus, without use of any theory, whatsoever, our p
nomenological analysis of the data has revealed mathem
cal properties which, if demanded from a model, will narro
the search for this model significantly.

Fitting the integer power law~7! to the combined data in
Fig. 6 gives the prefactor and what we shall refer to as
theoreticalvalue for t0 for a given value ofA` , in order to
distinguish it from the relationship read of the individu
time series,

t0
theor~A`!5~0.4160.01! min/cm33A`

23 . ~8!

III. MODELS

Voter and Erickson considered three theoretical mod
for their experimental time series@17#: ~i! The classical
model by Oosawa and co-workers@5–7#, which is the sim-
plest possible theory describing nucleation followed by p
lymerization. It describes formation of a nucleus in a sing
step. Experimental results for the spontaneous self-assem
of actin filaments,which are relatively simple helical poly
mers, are fitted well by this model@11#; ~ii ! a double-
nucleation model devised for the spontaneous polymer
tion of deoxy sickle hemoglobin@14#. This model has already
formed polymer catalyze the nucleation of more polyme
and ~iii ! a model for two-dimensional nucleation and pol
merization inspired by the geometrical form of microtubule
Neither of these models described the time series well@17#.

In view of this, we formulated agenericclass ofphenom-
enologicalmodels which describe the formation of a nucle
throughany sequence of intermediate stages, assuming o
a singlesequence, or path of assembly, is involved; see F
7. In principle, several different paths of assembly may c
tribute simultaneously to the formation of microtubules.
this is the case, it is hardly possible to separate and de
mine these paths from the turbidity time series alone,
cause different paths typically will contribute to the turbidi
with different weights at different initial tubulin concentra
tions. That is why we tentatively assumed that there is o
one path of self-assembly~cf. @22#!. We also assumed tha
every stage in this path is connected to the next stage
addition of monomers only. This second assumption is v
reasonable because the monomer concentration greatly
ceeds any other concentration while nucleation takes pl
With these two assumptions, we could write down a gene
set of kinetic equations describing the assembly process.
cording to Occam’s Razor, this model is then correct if it
works. If it does not, that is also a definite result about
complexity of the data. We found the assumption confirm
by the results it leads us to, or, more correctly, we found
justified as a very good and practical first approximation. W
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7088 56HENRIK FLYVBJERG AND ELMAR JOBS
will briefly return to the possibility of multiple pathways i
Sec. XII C.

Let c denote the monomer concentration,ci the number
concentration of thei th relatively stable intermediate assem
bly product,ni the number of monomers added to this pro
uct to form the (i 11)th intermediate assembly product,k
the number of different, successive intermediate product
i.e., k is the number of intermediate assembly stages of
nucleus— andn the number concentration of nuclei, includ
ing such on which microtubules have grown. LetM denote
the amount of mass polymerized to microtubules, discou
ing the mass in nuclei and intermediate assembly produ
since the latter do not contribute to the turbidity. With th
notation, andf i , bi , anddi denoting forwards, backwards
and disintegration rate constants, respectively, the kin
equations are

FIG. 7. Kinetics of assembly of nucleus from monomers w
concentrationc through several relatively stable intermediate agg
gates. For 1< i<k, f i is the rate constant for the assembly of t
( i 11)th relatively stable aggregate, having concentrationci 11,
from thei th such aggregate, having concentrationci , by addition of
ni monomers.bi is the rate constant for the reverse process, andi

the rate constant for disintegration of thei th aggregate. The
(k11)th aggregate is the nucleus, defined as the smallest aggr
to which further addition of monomers takes place one at a ti
and at the rate with which microtubules grow. The number conc
tration of these nucleiand longer microtubules isn, and the con-
centration of polymer mass accumulated in them isM .
-

e

t-
ts,

ic

dc1 /dt5 f 0cn02 f 1cn1c11b2c22d1c1 , ~9!

dci /dt5 f i 21cni 21ci 212 f ic
nici2bici1bi 11ci 112dici

for 2< i<k, ~10!

dn/dt5 f kc
nkck , ~11!

dM/dt5 f k11cn. ~12!

The addition ofni.1 monomers in one step at a rate pr
portional tocni is the effective kinetic description that resul
when one is unable to time resolveni rapid successive addi
tions of a single monomer, in equilibrium with the quic
decay of the highly unstable intermediate aggregates form
Sinceni51 is allowed in Eqs.~9!–~11!, any degree of ex-
perimental time resolution can be captured with these eq
tions, including perfect resolution.

f k11c is the rate at which microtubules grow at tubul
concentrationc. We have set the backwards ratesbi and the
destruction ratesdi to zero for i>k11, assuming microtu-
bules can only grow. This is what we expect for microt
bules stabilized with glycerol, as in@17#. It is what was
found experimentally for microtubules stabilized with a no
hydrolyzable GTP~guanosine triphosphate! analog ~@23#,
Fig. 3!. It has also been demonstrated experimentally
nonstabilized microtubules in the growing state@24#.

IV. RELATING EXPERIMENTAL
AND THEORETICAL VARIABLES

When self-assembly is initiated att50, only monomers
are present. Since nuclei form with difficulty, while micro
tubules grow rapidly, the amount of tubulin contained in n
clei and intermediate aggregates is negligible at any t
during assembly, compared to that in monomer or polym
form. If we neglect the negligible, mass conservation giv
us

c1M5c~0!, ~13!

wherec(0) is the monomer concentration at timet50. For
comparison and later consistency check, the exact relat
ship is

c1n0c11~n01n1!c21~n01n11n2!c31•••1S (
i 50

k21

ni D ck

1S (
i 50

k

ni D n1M5c~0!. ~14!

We checked the consistency of the approximation~13! by
using it when solving the theory derived below, and insert
the solution into the additional terms occurring in Eq.~14!.
As they turned out to be negligible at all times, the appro
mation ~13! is self-consistently correct.

This is a crucial result because we cannot use the e
relationship~14!. Only Eq. ~13! enables us to relate the ex
perimentally measured variable, the turbidity, to the theor
cally relevant variable, the tubulin concentration, in a ma
ner that preserves the precision with which the turbidity
known. Equation~12! shows thatM will keep growing until
c50, so from Eq.~13! follows that M (`)5c(0). As ex-
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plained in the next subsection, the turbidityA is proportional
to the amount of polymerized tubulinM , so we have

A~ t !/A`5M ~ t !/M ~`!512c~ t !/c~0!. ~15!

With this simple relationship we avoid corrupting the pre
sion of the data with biochemical assays ofc(0) and of the
relationship between turbidity and polymerized tubulin. I
stead, we work with the relative variablec(t)/c(0), and use
Eq. ~15! to relate this theoretical variable to the experime
tally measured variableA(t), a crucial practical point in our
analysis.

A. Why A„t…}M „t…

We have considered and excluded the possibility that
initial lag in turbidity in Fig. 1 is an artifact due to sho
microtubules contributing less to the turbidity@25#. The tur-
bidities in Fig. 1 were measured with 350 nm light. At th
wavelength, monomers and oligomers are transparent, w
microtubules longer than the wavelength— i.e., microtubu
containing more than 600 monomers— contribute to the
bidity with an amount that is proportional to their length to
very good approximation~@25#, Fig. A2!.

Our analysis of the turbidity time series in Fig. 1 sho
that microtubule nucleation has dropped to less than 2%
its initial rate when microtubule polymerization has reduc
the tubulin concentration to less than half of its initial valu
Microtubules polymerized after that point in time contribu
even less than 2% to the total turbidity. Ignoring the lat
microtubules, microtubules grow to a length of 350 nm
times that are negligible relative to the characteristic times
the turbidity time series. This is seen as follows: For lack
a direct measurement of the microtubule growth rate,
interpolate results obtained in other buffers and at other t
peratures@24,26–28#, and estimate the rate in the buffer an
at the temperature used in@17# to be approximately
1 mm/min/(mM tubulin!. Consequently, in the most sensitiv
case, that of highest initial tubulin concentration, 19.0mM,
microtubules nucleated at half that concentration grow
350 nm in 2 sec. This initial time interval, in which a micro
tubule does not contribute to the turbidity with an amou
proportional to its mass, is negligible. For comparison,
origin of time is defined by the temperature ‘‘jump’’ initiat
ing nucleation; it lasts 15 sec@17#.

V. CONSEQUENCE OF SCALING LAWS

We need not solve Eqs.~9!–~15! before we look for so-
lutions satisfying the scaling laws~1! and ~7!. Instead, we
impose as ademand on the equations~9!–~15! that their
solutions satisfy the scaling laws. This simplifies the eq
tions very much, hence eases our task of solving them.

The demand is implemented by rewriting the gene
equations~9!–~12! in terms of scaling variables,t/t0, c/c0,
ci /c0

m , M /M (`)5M /c0, wheret0}c0
2m . Here we have in-

troduced the shorthand notationc0 for c(0) and a paramete
m which, according to Eq.~7!, has the value 3. In order t
demonstrate the generality of our approach, arguments,
results, we treatm as if its value is unknown for as long a
we can.

Having rewritten the kinetic equations in terms of t
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scaling variables, one demands thatc0 does not appear ex
plicitly anywhere in the equations, but only implicitly
through the scaling variables. It is this demand which e
sures that solutions obey the scaling laws. It also for
many terms out of the equations, because they contain
plicit powers ofc0. It restricts the possible kinetics to jus
one set of equations:

dc1 /dt5 f 0c2m2 f 1cmc1 , ~16!

dci /dt5 f i 21cmci 212 f ic
mci for 2< i<k, ~17!

dn/dt5 f kc
mck , ~18!

dM/dt5 f k11cn. ~19!

While coupled nonlinear differential equations in general
not analytically solvable, this particular set is to quite
extent.

VI. ANALYTICAL SOLUTION OF MODEL

The relevant initial condition for Eqs.~16!–~19! is one
with only tubulin present at time t50: c5c0,
c15c25•••ck5n5M50.

Eliminating M , n, ck , . . . , c2, andc1 from these equa-
tions, we find thatc satisfies the equation

S )
i 51

k Fc2m
d

dt
1 f i G D Fc2m

d

dtG
2

cm52mS )
i 50

k11

f i D cm,

~20!

with initial condition

c~0!5c0 ,
dic

dti
~0!5 0 for i 51,2, . . . ,k,k11. ~21!

While nonlinear (k12)th-order differential equations in
general are not analytically solvable, this particular one
We introduce alternative variablest andg,

t5E
0

t

cm~ t8!dt8, ~22!

g~t!5@c~ t !/c0#m. ~23!

These definitions were chosen to havec2md/dt5d/dt, so
that the nonlinear differential equation~20! simplifies to a
linear differential equation

F d

dtG2S )
i 51

k F d

dt
1 f i G D g52mS )

i 50

k11

f i D g. ~24!

This equation can be solved forg as a function oft,

g~t!5 (
i 50

k11 S )
j 50
j Þ i

k11
zj

zi2zj D exp~zit!, ~25!

where zi ,i 50, . . . ,k11, are thek12 roots of the polyno-
mial
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z2~z1 f 1!•••~z1 f k!1m f0f 1••• f k11 , ~26!

and we have used that the initial condition translates to

g~0!51, dig/dt i~0!50 for j 51, . . . ,k11. ~27!

The solution forc(t) is then obtained in parametric form,

t5c0
2mE

0

t

dt8g21~t8!, c~ t !5c0g1/m~t!, ~28!

where the integral is known analytically only in the case
k50, i.e., for Oosawa’s model.

In all these equations,f 0 and f k11 occur only through the
product) i 50

k11f i , and are furthermore invariant under perm
tations of f 1, f 2, . . . , f k . This is so because the turbidit
depends on only the total summed length of polym
formed, and not on its distribution on microtubules, nor
the concentrations of intermediate aggregates. This prop
then carries over toM (t) and c(t) by Eq. ~15!. Conse-
quently, any solution to these equations will depend onf 0
and f k11 only through their product, and onf 1, f 2, . . . , f k in
a manner that is invariant under permutations. Thus a fi
such a solution to experimental data usingf 0, f 1, . . . , f k11
as fitting parameters can never determine them all, but o
f 1, . . . , f k and the productf 0f k . Furthermore, for any fitted
set of parameters in which thef is are not identical for
i 51, . . . ,k, there are other parameter sets giving exactly
same fit, namely, all permutations of (f 1, . . . , f k).

Equations~16!–~19! are just one set out of a class
similar sets of equations characterized by two parameterm
and k. All these nucleation-polymerization models are an
lytically solvable but for one integral. The case ofk50, i.e.,
nucleation in a single step from monomer to nucleus,
Oosawa’s model, and fully solvable with

c~ t !5c0cosh21/m~@m f0f 1c0
2m#1/2t !. ~29!

VII. DETERMINING THE NUMBER OF EQUATIONS

At this point in our analysis we have found more than
need, a whole class of soluble nucleation models, par
etrized by the two integersm andk. We know thatm53, but
have yet to determinek from the experimental data. Thi
amounts to determining the number of equations in
theory ~16!–~19! from the data that the theory is meant
describe. This is done by observing that all the equati
~16!–~19! are first-order differential equations in time—a
kinetic equations are—and that the variables they descr
(ci) i 51, . . . ,k , n, andM , all vanish initially, while each one
of them initially increases at a rate proportional to the va
of the previous one. Consequently,M (t)}tk12 initially, and
the number of equations follows fromM (t)’s growth at early
times. The following subsection details this.

A. Initial assembly kinetics: Theory

The kinetics at early times is described by solving E
~16!–~19! to leading order int. To this end we note that only
c differs from zero initially, c(0)5c0, while c15c2
5•••5ck5n5M50 initially. c1 is initially created at a
constant rate,f 0c0

2m , soc1 initially grows proportional tot.
f

-
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rty
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Sincec2 is created at a rate proportional toc1, c2 initially
grows proportional tot2. c3 grows at a rate proportional to
c2, hence proportional tot3 initially. And so on, with M
growing proportional totk12 initially. Only with M ’s in-
crease from zero doesc(t) decrease fromc0, i.e.,
c(t)5c02O(tk12). So to leading nonvanishing orders w
have initially that

c1~ t !5 f 0c0
2mt1O~ t2!, ~30!

c2~ t !5 f 0f 1c0
3mt2/21O~ t3!, ~31!

AA

ck~ t !5S )
i 50

k21

f i D c0
~k11!mtk/k! 1O~ tk11!, ~32!

n~ t !5S )
i 50

k

f i D c0
~k12!mtk11/~k11!! 1O~ tk12!, ~33!

M ~ t !5S )
i 50

k11

f i D c0
~k12!m11tk12/~k12!! 1O~ tk13!.

~34!

From Eq. ~34! we see that a plot of
log10@A(t)/A`#5 log10@M (t)/M (`)# against log10(t/t0)
should start out at early timest as a straight line with slope
k12 independent of initial concentrationc0.

The inset in Fig. 5 shows the experimental data plot
this way. The very earliest data points shown, those hav
A/A`,1022, are not measures of turbidity, but indicate t
limit of the turbidimeter’s sensitivity. Later points initially
fall on a straight line with a slope that we now determine

B. Initial assembly kinetics: Phenomenology

Some care is required in order to extract an asympt
behavior from noisy data. One can choose between ro
methods that willingly yield a result—which may be wron
without much warning—and more refined methods that
mand more from the data to function, but also give inform
tion about a result’s reliability. In@18# we used a robus
noise reduction method to obtain a value for the number
equations, and found the valuek1254.96. That result was
seducingly close to an integer value, as it should be, but
was also the only cross-check we had on the result, an
could be the outcome of chance.

In the present paper we apply a more systematic and m
demanding method, and findk falls between 3 and 4, with
the value 4 being favored. We fitted

atk121btk13 ~35!

to the initial part of each time series, usinga, b, and k as
unknown, real fitting parameters, and fitting to data points
to a cutoff time, measured in units of the characteristic ti
t0 for each time series. The degree of justification with whi
we may use Eq.~35! to describe theindividual time series’
early behavior is indicated by the size of the equation’s fi
term compared to its second term fort equal to the cutoff
time. With a k value found in this manner for each tim
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series, we face thatk should have the same value for all tim
series, according to our scaling assumption. We there
calculated the mean of thek values found for individual
series and the variance on this mean, and estimated the
mon k value by the calculated mean, while estimating t
quality of this estimate by the magnitude of the variance;
Fig. 8.

However, since the form~35! is true only fort values so
small that terms of ordertk14 and higher can be neglected,
we have done, our fits of this form to all data up to a cut
time will depend on the value of the cutoff time, except
the limit where this cutoff is taken to vanish. So at lar
cutoff times our estimate has systematic errors in it, bu
fairly small error bar, since we fit to many data points. Co
versely, as the cutoff time is reduced, the systematic er
are reduced, but the error bars on the estimate grow, bec
the k values that we average over show more scatter w
obtained from fits to fewer data points; see Fig. 8. This fig
shows very similar results for data setsA and B, thus con-
firming the experimental reproducibility of our results. The
results do not point convincingly to an integer value, ho
ever. But since one must be chosen,k54 is the best choice
and certainly in agreement with Fig. 8, though the value
that we found with a less refined method in@18# is not en-
tirely excluded.

VIII. THE SIZE OF THE STABLE NUCLEUS

With both k andm known, we also know the numbern,
of tubulin hetero dimers it takes to form the stable nucle

FIG. 8. Estimates fork, the number of intermediate assemb
stages in the kinetic theory~16!–~19!, based on fits of the form~35!
to points in the experimental time series havingt/t0 less than an
upper cutoff.
re
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,

according to our model. The size of the nucleus is

n5n01n11•••1nk5m~k12!, ~36!

so we conclude that the nucleus containsn518 monomers.
This number is close to the typical number of protofilamen
14, in self-assembled microtubules@29#. It is also close to the
number of hetero dimers it would take to form a lock-wash
structure similar to that formed by tobacco mosaic viru
coating protein as a first step in its polymerization.

IX. RATE CONSTANTS

We fitted the theoretical turbidityA(t)5A` @12c(t)/c0#
to the experimental time series, using the rate constants
fitting parameters, see Fig. 9. The theoretical turbidity w
found by inserting Eqs.~25! and~28! with m53 andk54 in

FIG. 9. Two-parameter fits of the theoretical turbidity to co
lapsed experimental time series. The data collapse shown he
not as good as that shown in Fig. 5 because time was rescale
Fig. 5 with thet0 values read off the time series, while here it
rescaled witht0

theor. Also, the present figure shows all series, inclu
ing obvious outliers.~a! Fitting to time series 3–8 in data setA, as
ranked by final turbidity, gives the curve shown and parameter v
ues given in the second line of Table I. The two outlier serie
shown as circles with and without crosses, are series 1 and 2,
are not included in the fit. Table I also gives parameters result
from a fit to series 3–6.~b! Fit to time series 2–8 in data setB,
resulting in parameter values given in the fourth line of Table I. T
outlier series, shown as filled circles with crosses, is series 1, an
not included in the fit. Table I also gives parameters resulting fro
a fit to series 2–7.
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7092 56HENRIK FLYVBJERG AND ELMAR JOBS
Eq. ~15! and fitting its five parameters,f 1 , f 2, f 3, f 4, and
) i 50

5 f i , to the experimental data. For both data setsA andB
and in several fits with different initial values and stoppi
criteria, we foundf 15 f 25 f 35 f 4 up to insignificant numeri-
cal differences. We consequently chose toassumethis iden-
tity, and then fit again, now with a total of only two fittin
parameters. Figure 9 shows the latter fits. The parameter
ues obtained from fits to data setsA and B do not differ
significantly. They are given in the first four lines of Table
which show that the fitted parameter values are more se
tive to whether or not one includes the series for the fas
assembly processes in the fit, and less sensitive to whe
the fit is to data setA or B.

The values given forf 15 f 25 f 35 f 4 and) i 50
5 f i in Table

I are rather uncertain, but they are not physically unrealis
The largest initial concentration,c(0), used in the experi-
ments gives rise to a final turbidity of 0.8 cm21. Conse-
quently, at this initial concentration, one intermediate ass

TABLE I. Rate constants resulting from fits of model to expe
mental time series. The first four lines of table entries give res
for two different fits of the theory to each of the collapsed data s
A and B, as illustrated in Fig. 9. The first line of entries result
from a fit to time series number 3–6 in data setA, when the series
are numbered according to ascending final turbidity. The sec
line of entries resulted from a fit to time series number 3–8 in d
setA, the third line to series 2–7 in data setB, and the fourth line
to series 2–8 in data setB. The following lines of entries in the
table resulted from individual fits of the theory to individual tim
series, each of which is identified in column I by its final turbidit
Columns II and III: Values for parameters) i 50

k11f i and
f 15 f 25 f 35 f 4 found by fitting model to given time series. Colum
IV: x2 per degree of freedom for the fit. Column V: The data
that the time series belongs to.

I II III IV V

A` ) i 50
k11f i f 1 xPDF

2 Data set
~cm21) ~cm18/min6) ~cm3/min! ~dimensionless!

164 1.2 7.9 A, 3–6
258 2.0 21 A, 3–8
209 1.6 56 B, 2–7
343 2.4 152 B, 2–8

0.142 499 3.5 0.5 B
0.146 372 2.7 0.4 A
0.236 74 -0.19 0.3 B
0.274 52 -0.76 0.1 A
0.279 84 0.14 0.8 B
0.338 84 0.11 0.3 A
0.365 134 0.82 0.5 A
0.371 115 0.64 1.9 B
0.456 168 1.3 1.4 A
0.471 236 1.9 5.6 B
0.542 208 1.6 4.8 B
0.582 205 1.6 3.1 A
0.672 328 2.4 78 B
0.703 421 2.8 23 A
0.768 582 3.3 6.1 A
0.772 1693 5.4 251 B
al-

si-
st
er
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bly product turns into the next one at a rate ofO(1) or less
per minute, i.e., binding at mostO(10) monomers per
minute. This rate should be compared with the rate at wh
microtubules bind monomers at the same concentration.
ing 1 cm21'20 mM tubulin as conversion factor betwee
turbidity and tubulin mass~@17#, Fig. 2!, the estimatef 5'1
mm/min/mM ~see Sec. IV A above!, and that microtubules
contain about 1700 monomers per micrometer, we have
crotubules binding approximately 27 000 monomers
minute. Clearly, the creation of new microtubules is a mu
slower process than the growth of existing ones, even at
highest concentration studied here. Any other result wo
have been inconsistent with their existence. Because of
large uncertainty on the value found forf 15 f 25 f 35 f 4, the
value for f 0f 5 that can be extracted from the value found f
the product) i 50

5 f i is too ill determined to be of interest.
In addition to the reasons already given for the fastest

slowest polymerizing time series, imperfections in the d
collapse in Fig. 9 could be due to small changes in exp
mental conditions between the series, such as slight va
tions in temperature and buffer conditions. Such variatio
would give rise to different values for rate constants desc
ing different time series, but presumably not change the
netics itself. To allow for this situation, we fitted the theo
to individual experimental time series, and found mos
very good individual fits; see Fig. 10 and Table I.

Figure 10 and column IV in Table I show that except f
the very fastest nucleation processes in each data set

ts
ts

d
a

t

FIG. 10. Two-parameter fits of the theoretical turbidity to ind
vidual experimental time series. Parameter values resulting from
are given in Table I.



i
e
is
e

l t
t

er

ut
m
tio
nt

er
d
n
s
sc
e

th

el
w
t

ow
e

bly
t
to

y
th

en
d
e

t
in
ng
-
th
a
om
a
th

.

a
w
.
o
w

io
ac
e
w
w

fit
e

ic,

n
-

-

a

e
e

56 7093MICROTUBULE DYNAMICS. II. KINETICS OF . . .
theory fits the experimental time series extremely well. It
not so surprising that the fastest processes are not mod
well. Already in Fig. 5, our phenomenological analys
showed that these fastest processes differ from the gen
data collapse. Since the model was developed to mode
latter behavior, we cannot expect it to also accommodate
former. We could not exclude that it would either, howev
so the fact that it cannot, when we specifically try to make
do it, indicates that the model is not arbitrarily flexible, b
has characteristic properties that are felt even on the s
scale of the scatter in the scaling collapse in Fig. 5. Sec
XII B discusses these properties of model vs experime
data.

Table I also shows that though the model fits the v
slowest nucleation processes well, the fits can be absur
yielding negative values for a positive definite rate consta
Again, we already knew from the phenomenological analy
that the slowest processes are anomalous relative to the
ing law in Eq.~7!, hence should not be surprised that we g
absurd results when we force the theory to fit time series
do not have the properties that guided us to the theory.

Figure 10 and Table I show that the theory fits very w
the time series in the middle of the experimental windo
Again, this is no surprise, since the theory was tailored
this purpose by tailoring it to the collapsed data which sh
the best collapse for these time series. The quality of th
individual fits is, however, better than one could possi
have expecteda priori. Figure 10 does not have sufficien
resolution to show the quality of the best fits of the theory
the data. Figure 11 shows two-parameter fits of the theor
two experimental time series chosen from the middle of
experimental window.

When discussing the quality of these fits, we should m
tion that thex2 values given in column IV in Table I shoul
not be taken too seriously. The error bars on the experim
tal time series’ data points that thesex2 values are based
upon, are not true, independent statistical errors, but just
best we could come up with, namely, the instrument read
at vanishing input. The fact that we could fit several lo
time series with ax2 per degree of freedom which is signifi
cantly less than 1 is at least partly due to the fact that
theory was tailored to fit these data, i.e., we have not
counted correctly for the number of degrees of freed
when setting it equal to two, the number of independent r
constants fitted. But we may also have overestimated
errors on the data points, and/or they may be correlated

More important, we note a clear trend withA` in the
values obtained for the fitted parameters, i.e., a system
error relative to the assumed scaling behavior. This trend
noted already in the discrepancy to perfect collapse in Fig
Since the theory was designed to be a scaling theory, it
viously cannot describe these scaling violations. So when
force it to model the individual time series, the scaling v
lations show up in the fitted parameter values, the only pl
where the theory can accommodate them. The range cov
by these fitted parameter values is indicative of how well
really know the parameter values obtained with the fit sho
in Fig. 9.

The general conclusion resulting from these individual
is ~i! that the model describes the data exceedingly w
when it does it best,~ii ! that there are small, but systemat
s
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scaling violations in the data, and~iii ! that the theory devel-
oped here does not model the slowest and fastest nucleatio
processes for which we have experimental data. Natural ex
planations of this last point were given above, and more are
given below.

X. TIME COURSE OF PRODUCTION RATES

Now that the experimental time series for the amount of
final polymer have yielded a model for the pathway of as-
sembly, we may follow that pathway, and see how it is tra-
versed, i.e., follow in time the rates of production for its
various intermediate products. Figure 12’s top frame shows
the tubulin concentration as a function of time in a typical
nucleation process chosen from the middle of the experimen
tal window, the one in data setA with final turbidity
A`50.456 cm21. The following frames show the produc-
tion rates for the various intermediate assembly products as
function of time, with the bottom frame showing the rate of
production of the final product, the microtubule polymer.
The values forf 0 and f 1 used to produce this figure were
those in Table I, i.e., this figure shows the time course of the
production rates leading to the theoretical turbidity shown in
Fig. 11~a!.

FIG. 11. Two of the best fits in Fig. 10, enlarged to make error
bars and quality of fit visible.~a! Time series withA`50.456
cm21. ~b! Time series withA`50.274 cm21. The error bars given
for the experimental data points are estimates. As estimator we us
the instrument output at times so early that there was no input in th
form of turbidity caused by microtubules; see the inset in Fig. 5.



al
n
s
t

-
f

th

u

ab-
es
of

ng

i-
il-
is

on
um-
ing
g
in

n,
-
we
les

la-

u

s

12.
to

nnot
ro-
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Figure 12 illustrates, among other things, that thei th in-
termediate product is produced at a rate proportional tot i 21

at early times, which, combined with the vanishing initi
values, gives that thei th intermediate product is present i
amounts proportional tot i initially, as discussed above. Thi
i dependence of the early rates is just a manifestation of
model’s property that thei th intermediate product is pro
duced from the (i 21)th product. The relative locations o
the maxima in the rates shown is another manifestation
this property. The vanishing of the rates at late times, on
other hand, is similar for all rates except the last,Ṁ . The
other five rates vanish asc3, we know, and that includesċ1,
though it vanishes from negative values, because its prod
tion from monomers vanishes faster, asc6, than the rate at
which this first assembly product turns into the next one.

Figure 12~a! also shows that the tubulin concentrationc

FIG. 12. Time dependence of tubulin concentration and prod
tion rates ~in scaling units! for f 05168.48 cm18/min6 and
f 151.347 cm3/min, as found from fit to experimental time serie
with A`50.4560 cm21. ~a! Tubulin concentrationc vs time t; in

units ofc0 andt0
theor, respectively.~b!–~e! Rate of productionċi of

intermediate assembly producti , i 51, . . . ,4, vstime; in units of

c0
3/t0

theor. ~f! Rate of productionṅ of stable nuclei vs time; in units

of c0
3/t0

theor. ~g! Rate of productionṀ of polymer vs time; in units
of c0 /t0

theor.
he

of
e

c-

remains almost constant initially:c/c0'1 up to the tenth
time, t0

theor. This is understood by noting thatM , the amount
of final andsixthproduct, grows ast6 initially, and therefore
c/c0512M /M (`)512O(t6) according to Eq.~15!. This
slow initial decrease of the tubulin concentration was est
lished as a mathematical property valid at infinitesimal tim
t in Sec. VII A above, and used to determine the number
equations in the kinetic model. Figure 12~a! now shows that
it is a good approximation up to the tenth time, a stro
indication that our procedure was at leastself-consistently
correct.

The scenario invoked in Sec. II C to explain the turbid
ty’s exponential approach to its asymptotic value is also
lustrated by Fig. 12: The rate at which new microtubules
formed, ṅ, clearly vanishes before the tubulin concentrati
does. So at the latest times there is an essentially fixed n
ber of microtubules present. They grow from the remain
tubulin, at a rate simply proportional to the remainin
amount of tubulin; compare the latest part of the curves
the top and bottom frames in Fig. 12.

XI. THE DISTRIBUTION OF MICROTUBULE LENGTHS

A. Theoretical results

Figure 13 shows the theoretical final length distributio
p(l ;t5`), of the microtubules formed in the nucleation
polymerization process described also in Fig. 12. Since
can determine neither lengths nor numbers of microtubu
from turbidity time series, the distribution shown is the re
tive one, normalized to unity,

E
0

`

dl p~ l ;`!51, ~37!

and the length it depends on is also relative,

c-

FIG. 13. Length distribution of microtubules at the end,t5`, of
the nucleation-polymerization process described also in Fig.
The zeroth and first moment of the distribution were normalized
unity, because the turbidity measurements analyzed here ca
yield absolute numbers, either for lengths or for numbers of mic
tubules. The distribution’s form at small and large values ofl is
given in Eqs.~44! and ~46!, respectively, withm53 andk54.
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E
0

`

dl l p~ l ;`!51. ~38!

We found this length distribution by combining ou
knowledge of the rateṅ(t) at which microtubules form a
any time t with our knowledge of the velocityf k113c(t)
with which they grow. Thus a microtubule having lengthl
at time t5` was created at a timet related tol by

l 5 f k11E
t

`

dt8c~ t8!. ~39!

At that time of creation,t, microtubules were created at th
rate ṅ(t). Thus the number of microtubules at time infini
with lengths in an intervaldl at l is

p~ l ,`!dl 5 ṅ~ t !dt, ~40!

wheredt is related todl through

dl /dt5 f k11c~ t !, ~41!

so that

p~ l ,`!5
ṅ~ t !

f k11c~ t !
5

f k

f k11
ck~ t !c~ t !m21. ~42!

This is the distribution shown in Fig. 13. Similar argumen
give p(l ;t) at any finite timet. These distributions at earlie
times are, however, just the distribution shown in Fig.
translated towards shorterl values and truncated atl 50.

Our analytical understanding of early and late nucleat
and polymerization, as described by our model, transla
into a similar understanding of the length distribution for t
longest and shortest microtubules. The shortest microtub
were formed at the latest times, whereck(t)5ck(`), while
c(t) vanishes as a simple exponential. Used in Eq.~39!, this
gives

l }c~ t ! for l '0, ~43!

wheret is the time of creation of the microtubule of leng
l . Consequently, by Eq.~42!,

p~ l ;`!}l m21 for l '0. ~44!

The maximal length a microtubule can have, according
our nucleation model, is

l max5 f k11E
0

`

dt8c~ t8!. ~45!

The longest microtubules were formed at the earliest tim
where c(t)5c0, hencel max2l }t, and ck(t)}tk. Conse-
quently,

p~ l ;`!}~ l max2l !k for l 'l max. ~46!

B. Experimental triple test

The length distribution of microtubules is experimenta
measurable. It has been measured in other experiment
fluorescence microscopy@30#, by electron micrography
n
s

es

o

s,

by

@31,32#, and its Fourier transform by synchroton radiatio
~@33# and references therein!. The formulas just derived show
that an experimental measurement of the final length dis
bution of microtubules, obtained after nucleation and po
merization has run its course, can provide atriple test of the
theory presented here. The simplest test consists in mea
ing the length distribution experimentally and comparing
with Fig. 13. But with sufficient experimental data, there a
two additional tests of the theory: Its two integer paramete
m and k, are found not only from the turbidity time serie
but again in the final length distribution. While this seco
determination ofk related directly to that obtained from th
time series, the second determination ofm relates to a par-
ticular stage in the nucleation process, the formation of
crotubules from the last intermediate assembly product
seen from Eq.~42!. This stage cannot be observed as direc
in the turbidity time series as it can in this analysis of t
final length distribution.

XII. BEYOND SCALING

Although the theory presented above describes the tur
ity time series with precision, it is only an approxima
theory. It was obtained by assuming scaling, a property
is only approximately satisfied by the experimental data. B
because it is satisfied to a good approximation, the the
presented above is also a good starting point for a search
a more precise theory.

A. Systematic scaling violations, I

Clues to the properties of an improved theory must
found in the systematic differences between the experime
data and the scaling theory derived above. To this end,
observe that the experimental time series analyzed here
tually contain more information than we have used. T
shows up in two ways. First, the scaling violations that o
can observe in Fig. 5 at late assembly times, display a tr
with A` : the larger the initial tubulin concentration is, th
slower is the approach of the time series to its asympt
value, when measured in scaling variables, as done in
figure. Second, the approach to the asymptote is expone
in time, as illustrated phenomenologically in Fig. 3, and fo
lowing theoretically from Eq.~6!. But while we found the
tenth time,t0, proportional toA`

23 , the characteristic times
t` , of this exponential approach, defined as

A`2A~ t !}exp~2t/t`! ~47!

do not quite obey this power law; see Fig. 14.
If the experimental time series did scale perfectly a

with t0}A`
23 , then t` /t0

theor would be constant, independen
of A` , in Fig. 14. The plot shows a trend, however, or t
two largest turbidities in each data set,A andB, label outli-
ers. These outliers are not statistical in nature, but syst
atic, since both data setsA and B display them for both
series with largest final turbidities.

Note, however, that by focusing onA`2A(t) at late
times we are focusing on only a small part of the who
value ofA(t). So there is no grave contradiction in practic
A(t) itself can scale witht0}A`

23 to a good approximation
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while the small, late increments inA(t) simultaneously show
significant scaling violations.

B. Features in data that ordinary differential equations
cannot model

Focusing onA`2A(t) at late times, reveals aqualitative
limitation, as well, of the theory presented here. Plotted as
Fig. 3, theslopeof the time series is

d

dt
log10@A`2A~ t !#5

d

dt
log10c~ t !52

c0

M ~`!
f k11n~ t !

~48!

according to Eqs.~15! and ~19!, i.e., the slope equals the
number of microtubules that have been nucleated,n(t), up to
a constant. According to our theory’s Eq.~18!, this number is
nondecreasing,microtubules never disappear. This is a tech-
nically important feature of the theory, because it makes
possible to formulate the kinetic equations for the tot
amount of polymer formed as a finite number of ordina
differential equations: The amount of polymer grows by a
dition of monomers to existing microtubules~including
stable nuclei!, and the number of these microtubules an
nuclei is entirely given by the kinetics describing their for
mation in a finite number of steps, as described above.

If, on the other hand, the number of microtubulesde-
creasesat any point in time—as we observe in the rightmo
time series in Fig. 3 whose steepest slopes are steeper
their final slopes—then, obviously, we observe a pheno
enon that is beyond our theory. No theory based on a fin
number of ordinary differential equations can describe th
phenomenon correctly. Since microtubules disappear by
polymerization from their ends, only a theory having th
length distributionsof growing and shrinking microtubules
as dynamical variables, can describe this correctly. Such
theory involves partial differential equations, as in the mod
for microtubule oscillations described in@21#.

FIG. 14. Characteristic timet` of each experimental time series
exponential approach to its asymptotic turbidityA` in units of its
theoretical tenth timet0

theor5(0.4160.01) min/cm33A`
23—plotted

against its asymptotic turbidity,A` .
in

it
l

-

t
an
-

te
s
e-

a
l

C. Systematic scaling violations, II

The time series corresponding to the largest initial tubu
concentrations signal some disappearance of microtubule
intermediate times when analyzed in terms of our theory,
just saw, hence cannot be fully reproduced by our theo
The insights of the preceding section may explain the ou
ers at the largestA` values in Fig. 14. The too large value
for t` /t0

theor correspond to too small values for the final num
ber of microtubules because

t`
2152 lim

t→`

d

dt
log10@A`2A~ t !#}n` . ~49!

So instead of the final number of microtubules present
focus on theirmaximalnumber, and the characteristic tim
tmax for the corresponding polymerization rate@34#,

tmax
21 5max

t
S 2

d

dt
log10@A`2A~ t !# D . ~50!

For time series showing no disappearance of microtubu
tmax5t` , and this is the case for most series. But whe
there is a difference, our theory has a better chance of
scribing the dynamics only up to the time where the num
of microtubules is maximal.

Figure 15 showstmax/t0
theor plotted againstA` . Compar-

ing with Fig. 14, we note that the outliers have disappear
~Note change of scale on second axis.! But there is still a
significant trend in the plot, i.e., significant scaling viol
tions.

The fact that we can isolate a systematic scaling violat
in the time series shows that the scaling theory presen
here does not exhaust the experimental information hidde
the series.

We have tried to modify and extend the theory in su
ways that the scaling violations described here are accom

FIG. 15. Characteristic time of maximal relative polymerizati
rate, tmax51/maxt@2dlog10c(t)/dt# in units of t0

theor5(0.4160.01)
min cm33A`

23 plotted for each experimental time series against
asymptotic turbidityA` . The straight lines through the data a
separate fits to data setsA andB, and have slopes 0.1560.05 and
0.3360.06, respectively. In the case of perfect scaling these slo
should not differ significantly from zero.
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dated in a natural, perturbative way. A natural starting po
for minimal modifications of the theory is the theory’s coo
erative kinetics. We have tried to time resolve more step
the assembly pathway already established with the sca
theory. We have varied the cooperative nature of steps
floating ni in combined fits of the theory to whole data se
A and B, in a manner that affects the theory mainly at la
times, where scaling violations show in the data, wh
barely affecting the theory at early times, where the d
scale well. We have tried to form the first intermediate
sembly product in two parallel pathways, one being the o
step procedure described above, the other being a two-
procedure combining three monomers at a time. In this w
we did find theories with modest scaling violations whi
fitted the experimental time series better than our sca
theory. But the approach was entirelyad hoc, the improve-
ment was guaranteed by the fact that we added new fit
degrees of freedom to an already good theory, and finally
improvement was not dramatic, hence giving no clue to
lessad hocapproach. Add to this that the scaling violatio
we try to describe occur at late times, where they are mi
up with the effect of disappearing microtubules, a pheno
enon beyond any small modification of the theory. Then
have given our reasons for not pursuing the scaling vio
tions further.

XIII. DISCUSSION

A. Scaling violations

We have not overlooked the fact that we introduced
approximation with Eq.~13!. However, one shouldnot try to
‘‘improve’’ the theory by replacing Eq.~13! with Eq. ~14!.
For one thing, this would introduce an additional unknow
parameter,c0, by severing its simple proportionality with
A` . But from the experimental fact that typical microtubul
contain thousands of monomers it also follows that the
proximation introduced with Eq.~13! is verygood, much too
good for the difference to Eq.~14! to explain the scaling
violations in the data.

B. Relationship between turbidity and polymer mass

We have assumed a simple proportionality between
total amount of polymerized mass and the measured tur
ity, and this assumption played a key role in our argume
because it allowed us to identify the relative turbidity, i.
A/A` , with the relative amount of polymer formed, and fu
ther, by virtue of Eq.~13!, with the relative concentration o
tubulin. The assumed proportionality allowed us to rid o
selves of the unknown absolute scales of polymer mass
tubulin concentration by working with relative amounts, a
it also allowed us to use directly the relative turbidity for t
relative polymer mass, instead of corrupting the good pre
sion of turbidity measurements with the bad precision
biochemical assays in a calibration of the turbidity’s relatio
ship to polymer mass.

The assumption of proportionality is only correct, how
ever, in a reasonable approximation for microtubules w
lengths exceeding the wavelength of the light used to m
sure the turbidity, here 350 nm~@25#, Fig. A2! as discussed
above. Gaskin, Cantor, and Shelanski have demonstrate
t
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perimentally that there is, indeed, within a few percent
simple proportionality between polymerized mass and m
sured turbidity for turbidities from 0.1 to 0.4 caused by m
crotubules nucleated and polymerized in bulk, after equi
rium has been acquired~@35#, Fig. 4!. Related results were
obtained by Voter and Erickson~@17#, Fig. 2!. However,
Gaskin, Cantor, and Shelanski also demonstrated that
turbidity to some extent depends on the length distribution
the microtubules: By 30 seconds of sonication they redu
the average length of a sample of microtubules by a facto
or more, judging from micrographs. The turbidity at 350 n
consequently dropped by approximately 15%. But sonicat
for more than 2 minutes actuallyincreased the turbidity
above that of control samples, so it is not entirely clear w
went on, especially whether the total amount of polymer
mained constant during and after sonication. Thus it mi
be of some interest to repeat this experiment with micro
bules stabilized, e.g., with glycerol and no free tubu
present in order to test to which extent the turbidity depe
only on the summed total length of polymer, and not on
length distribution of the polymers.

C. Microscopic interpretation of the kinetic model

As it stands, the theory fitted to the data giv
f 15 f 25 f 35 f 4. This identity combined with the identity
n15n25n35n45m indicates that it is thesamemechanism
that stabilizes each of the intermediate assembly aggreg
A single allosteric effect involvingm53 tubulin het-
erodimers could be a simple microscopic explanation of t
identity. In this microscopic picture, triplets of tubulin hete
dimers are added successively to the sixplet first formed
form the nucleus of 18 dimers. One should be very cautio
however, about such a microscopic interpretation, beca
there is a simple, mathematical interpretation of the iden
f 15 f 25 f 35 f 4: We saw above from the exact solution
the model that any fit to the experimental data which wo
result in nonequal values forf 1, . . . , f 4, would also be ob-
tained from any permutation of these parameters. Thus
x2 landscape over the space of fitting parameters has
many degenerate minima as there are different permutat
of the four fitting parametersf 1, . . . , f 4. The simplest land-
scape is one with only one minimum, corresponding
f 15 f 25 f 35 f 4. Thus relatively rich and complex exper
mental data are necessary to sustain what appears to
generic set of values forf 1, . . . ,f 4, while the simplest pos-
sible situation, data sustaining only a single minimum inx2,
leads to identical parameter valuesf 1 , . . . ,f 4, hence an
identity in the model’s reactions which seems to require
special mechanism to assure its presence. There is, of co
also a special mechanism in effect that assures the identit
is symmetryunder the permutation group of four elemen
S4, that, in the language of high-energy physics, ‘‘protect
the identity of the rates.

D. Support for model from other experiments

The model presented here is somewhat supported by
dependent experiments done at 15oC–30 oC, which mea-
sured the nucleation ratedn/dt at constant tubulin concen
tration by counting the number of individual microtubule
being created, as seen through a microscope@36#. This rate
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was found proportional to the tubulin concentration to t
power 1262, which does not seriously disagree with t
power 18 predicted here, considering the errors possibl
both approaches. Rather, one should focus on the fact
both approaches give values in the same low range.

But if we tentatively do take seriously the value we ha
found for the size of the stable nucleus, we note that its
hetero dimers are very close in number to the typical num
of protofilaments in microtubules, 13, 14. This then sugge
that the stable nucleus may be a single ring or protoh
~‘‘lock-washer’’! like those formed by the coating protein o
tobacco mosaic virus@37,3#. Remarkably,g-tubulin forms
ringlike structures of size similar to our nucleus in ce
trosomes, where it participates inin vivo nucleation of mi-
crotubules, though it is not known exactly how@38#. It has,
however, been demonstratedin vitro that g-tubulin binds
tightly and exclusively to the minus ends of microtubules
a saturable fashion with a stoichiometry of 12.664.9 mol-
ecules per microtubule@39#. Taken together, these exper
mental results indicate that a ring ofg-tubulin the size of our
nucleus nucleates microtubules in centrosomes. Hence
natural to speculate whether the nucleus discussed in
present paper has the same shape.

E. The value of phenomenological data analysis
and systematic modeling

Even if the reaction pathway found here turns out to be
more than a mathematical mirage, it remains the most
cise mathematical substrate of the information in the d
until a better fitting model is developed. Our systematic de
vation of the model should also be of value by itself, i.e.,
a procedure. Compare it, e.g., with the way that the relev
Oosawa model was found in@9#: There, two time series fo
the self-assembly of actin were analyzed separately,
Oosawa’s model was found to fit both well, but with ill de
termined parameters in both cases. Only after some rou
about was it concluded that only one set of parameters wo
fit both experimental time seriessimultaneously. The
Oosawa model with zero off rate that was the final result
that analysis, is scale invariant. So are the experimental
series that it fits, we may conclude. But that property co
then have been establishedphenomenologicallyfrom the
start, in a model-independent manner, andthen the param-
,
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eters of Oosawa’s model could have been determined un
biguously in a straightforwardsinglefit of its scaling form to
the collapsed data.

XIV. CONCLUSIONS

Before one can conclude anything regarding a scen
for the molecular pathway of microtubule self-assembly,
kinetic model derived here must be supplemented with m
and independent evidence. It would also be interesting
measure turbidity time series at different temperatures.
slower kinetics and longer tubulin lifetimes at lower tem
peratures make it possible to study assembly at concen
tions inaccessible at 37oC. Similarly, it would be interesting
to monitor self-assembly from tubulin liganded with the no
hydrolyzable GTP analog GMPCCP@guanylyl-~a,b!-
methylene-diphosphonate#, since such tubulin nucleate
faster@23#, hence allows us to study self-assembly at low
concentrations. If the scaling behavior described here is
served at different temperatures and concentrations as w
that provides further evidence that there is, indeed, a defi
assembly mechanism responsible for the data.

For now, we may conclude about turbidity measureme
that this simple physical method can yield data of sufficie
quality to sustain a rather rigorous mathematical analy
About the mathematical analysis, we may conclude tha
sometimes is possible to solve theinverse problem, to find a
reaction’s path from its products. Thus, by combining
simple, but precise, physical measure with a system
mathematical analysis we have created a ‘‘microscop
through which one apparently may ‘‘observe’’ some oth
wise inaccessible details of a biochemical self-assembly p
cess. It would be interesting to obtain independent confirm
tion of these ‘‘observations’’ and to study other processes
this manner.
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